In [1]:
import tigre
geo=tigre.geometry_default(high_quality=False)
In [4]:
import numpy as np
from tigre.utilities.Ax import Ax
from tigre.demos.Test_data import data_loader
# define angles
angles=np.linspace(0,2*np.pi,dtype=np.float32)
# load head phantom data
head=data_loader.load_head_phantom(number_of_voxels=geo.nVoxel)
# generate projections
projections=Ax(head,geo,angles,'interpolated')
In [5]:
import tigre.algorithms as algs
print(help(algs.fdk))
In [7]:
imgfdk1=algs.FDK(projections,geo,angles,filter='ram_lak')
imgfdk2=algs.FDK(projections,geo,angles,filter='hann')
# The look quite similar:
tigre.plotimg(np.hstack((imgfdk1,imgfdk2)),slice=32,dim='x')
Out[7]:
On the other hand it can be seen that one has bigger errors in the whole image while the other just in the boundaries
In [9]:
dif1=abs(head-imgfdk1)
dif2=abs(head-imgfdk2)
tigre.plotimg(np.hstack((dif1,dif2)),slice=32,dim='x')
Out[9]:
In [ ]: