In [2]:
%matplotlib notebook
from sympy import init_printing
from sympy import S
from sympy import sin, cos, tanh, exp, pi, sqrt
from boutdata.mms import x, y, z, t
from boutdata.mms import DDX, DDZ
import os, sys
# If we add to sys.path, then it must be an absolute path
common_dir = os.path.abspath('./../../../../common/')
# Sys path is a list of system paths
sys.path.append(common_dir)
from CELMAPy.MES import get_metric, make_plot, BOUT_print
init_printing()
In [ ]:
def poisson(f, g, metric):
return\
DDZ(f, metric=metric)*DDX(g, metric=metric)\
-\
DDX(f, metric=metric)*DDZ(g, metric=metric)\
In [ ]:
folder = '../mixModeAndGaussian/'
metric = get_metric()
In [ ]:
# Initialization
the_vars = {}
NOTE:
In [ ]:
# We need Lx
from boututils.options import BOUTOptions
myOpts = BOUTOptions(folder)
Lx = eval(myOpts.geom['Lx'])
In [ ]:
# Two gaussians
# The skew sinus
# In cartesian coordinates we would like a sinus with with a wave-vector in the direction
# 45 degrees with respect to the first quadrant. This can be achieved with a wave vector
# k = [1/sqrt(2), 1/sqrt(2)]
# sin((1/sqrt(2))*(x + y))
# We would like 2 nodes, so we may write
# sin((1/sqrt(2))*(x + y)*(2*pi/(2*Lx)))
# Rewriting this to cylindrical coordinates, gives
# sin((1/sqrt(2))*(x*(cos(z)+sin(z)))*(2*pi/(2*Lx)))
# The gaussian
# In cartesian coordinates we would like
# f = exp(-(1/(2*w^2))*((x-x0)^2 + (y-y0)^2))
# In cylindrical coordinates, this translates to
# f = exp(-(1/(2*w^2))*(x^2 + y^2 + x0^2 + y0^2 - 2*(x*x0+y*y0) ))
# = exp(-(1/(2*w^2))*(rho^2 + rho0^2 - 2*rho*rho0*(cos(theta)*cos(theta0)+sin(theta)*sin(theta0)) ))
# = exp(-(1/(2*w^2))*(rho^2 + rho0^2 - 2*rho*rho0*(cos(theta - theta0)) ))
# A parabola
# In cartesian coordinates, we have
# ((x-x0)/Lx)^2
# Chosing this function to have a zero value at the edge yields in cylindrical coordinates
# ((x*cos(z)+Lx)/(2*Lx))^2
# Scaling with 40 to get S in order of unity
w = 0.8*Lx
rho0 = 0.3*Lx
theta0 = 5*pi/4
the_vars['n'] = 40*sin((1/sqrt(2))*(x*(cos(z)+sin(z)))*(2*pi/(2*Lx)))*\
exp(-(1/(2*w**2))*(x**2 + rho0**2 - 2*x*rho0*(cos(z - theta0)) ))*\
((x*cos(z)+Lx)/(2*Lx))**2
# Mixmode
# Need the x^3 in order to let the second derivative of the field go towards one value when rho -> 0
# (needed in Arakawa brackets)
# Mutliply with a mix of modes
# Multiply with a tanh in order to make the variation in x more homogeneous
# Scaling with 10 to make variations in phi comparable to those of n
the_vars['phi'] = 10*(6+((x/(Lx))**3)*\
cos(2*z)*\
(
cos(2*pi*(x/Lx)) + sin(2*pi*(x/Lx))
+ cos(3*2*pi*(x/Lx)) + cos(2*2*pi*(x/Lx))
)\
*(1/2)*(1-tanh((1/8)*(x))))
Calculating the solution
In [ ]:
the_vars['S'] = poisson(
DDX(the_vars['phi'], metric=metric)**2.0,
the_vars['n'],
metric=metric
)
In [ ]:
make_plot(folder=folder, the_vars=the_vars, plot2d=True, include_aux=False, save=False)
In [ ]:
BOUT_print(the_vars, rational=False)