ApJdataFrames
Kraus2017Title
: The Greater Taurus–Auriga Ecosystem. I. There is a Distributed Older Population
Authors
: Kraus, Herczeg, et al.
Data are from this paper:
http://iopscience.iop.org/article/10.3847/1538-4357/aa62a0/meta
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
pd.options.display.max_columns = 150
In [2]:
#%config InlineBackend.figure_format = 'retina'
In [3]:
import astropy
from astropy.table import Table
from astropy.io import ascii
In [4]:
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
In [5]:
#! mkdir ../data/Kraus2017
In [6]:
#! wget -q --directory-prefix=../data/Kraus2017/ http://iopscience.iop.org/0004-637X/838/2/150/suppdata/apjaa62a0t1_mrt.txt
#! wget -q --directory-prefix=../data/Kraus2017/ http://iopscience.iop.org/0004-637X/838/2/150/suppdata/apjaa62a0t2_mrt.txt
#! wget -q --directory-prefix=../data/Kraus2017/ http://iopscience.iop.org/0004-637X/838/2/150/suppdata/apjaa62a0t3_mrt.txt
#! wget -q --directory-prefix=../data/Kraus2017/ http://iopscience.iop.org/0004-637X/838/2/150/suppdata/apjaa62a0t4_mrt.txt
#! wget -q --directory-prefix=../data/Kraus2017/ http://iopscience.iop.org/0004-637X/838/2/150/suppdata/apjaa62a0t5_mrt.txt
#! wget -q --directory-prefix=../data/Kraus2017/ http://iopscience.iop.org/0004-637X/838/2/150/suppdata/apjaa62a0t6_mrt.txt
#! wget -q --directory-prefix=../data/Kraus2017/ http://iopscience.iop.org/0004-637X/838/2/150/suppdata/apjaa62a0t7_mrt.txt
In [7]:
! ls -1 ../data/Kraus2017/
In [8]:
! head ../data/Kraus2017/apjaa62a0t7_mrt.txt
In [9]:
tab1 = ascii.read('../data/Kraus2017/apjaa62a0t1_mrt.txt')
In [18]:
#tab1.show_in_notebook(display_length=5)
In [11]:
#tab1.write('../data/Kraus2017/tab1.csv', format='ascii.csv', overwrite=True)
In [12]:
tab5 = ascii.read('../data/Kraus2017/apjaa62a0t5_mrt.txt')
Convert the astropy tables to pandas dataframes.
In [13]:
df1, df5 = tab1.to_pandas(), tab5.to_pandas()
In [14]:
df1.head()
Out[14]:
In [15]:
df5.head()
Out[15]:
In [16]:
df1.shape
Out[16]:
In [17]:
df5.shape
Out[17]:
The end for now.