ApJdataFrames Alves_de_Oliveira_2012

Title: Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses
Authors: C. Alves Alves de Oliveira, E Moraux, Jerome Bouvier, G Duchêne, H Bouy, T Maschberger, and P Hudelot

Data is from this paper:
http://www.aanda.org/articles/aa/full_html/2012/03/aa18230-11/aa18230-11.html


In [1]:
%pylab inline
import seaborn as sns


Populating the interactive namespace from numpy and matplotlib

In [2]:
import warnings
warnings.filterwarnings("ignore")

In [3]:
import pandas as pd
pd.options.display.max_columns = 150

Table 4 - Spectral type and $A_V$ determined through numerical spectral fitting.

A&A offers no method to directly download a .txt file, so I have to copy the table to a clipboard to read it in. Since the reading from the keyboard method is not automatically repeatable, let's save this to as tab-separated data file, locally. Use tabs because there are commas in the content.

http://www.aanda.org.ezproxy.lib.utexas.edu/articles/aa/full_html/2012/03/aa18230-11/T4.html

names = ["CFHTWIR-Oph","RA","Dec","J (mag)","H (mag)","Ks (mag)","SpT","AV (mag)","T (K)","Properties"]
tbl4 = pd.read_clipboard(sep='\t', names = names)
tbl4.to_csv('../data/Alves_de_Oliveira2012/tbl4.csv', sep = '\t', index=False)

In [4]:
tbl4 = pd.read_csv("../data/Alves_de_Oliveira2012/tbl4.csv", sep = '\t')
tbl4.head()


Out[4]:
CFHTWIR-Oph RA Dec J (mag) H (mag) Ks (mag) SpT AV (mag) T (K) Properties
0 9 16:26:03.28 −24:30:25.9 17.76 16.33 15.32 L0 6.6 2250 H2O, CO
1 16 16:26:18.58 −24:29:51.6 17.09 14.92 13.55 M6.75 18.8 2908 ex, H2O, var
2 18 16:26:19.41 −24:27:43.9 18.92 17.16 16.04 L0 7.8 2250 ex, H2O, CO
3 30 16:26:36.82 −24:19:00.3 16.24 14.35 13.06 M3.25 4.9 3379 ex, var, X-ray
4 31 16:26:37.81 −24:39:03.3 14.65 13.45 12.66 M5.25,M5.5 5.7, 8.9 3091 ex, VO

Table 5 - Spectroscopically confirmed brown dwarfs in ρ Oph.

Once again, having to use the clipboard.

names = ["Identifier","RA","Dec","SpT","AV (mag)","References",
         "J (mag)","H (mag)","Ks (mag)","[3.6] (mag)","[4.5] (mag)","[5.6] (mag)","[8.0] (mag)","[24] (mag)"]
tbl5 = pd.read_clipboard(sep = '\t', names = names)
tbl5.to_csv("../data/Alves_de_Oliveira2012/tbl5.csv", sep = "\t", index=False)

In [5]:
tbl5 = pd.read_csv("../data/Alves_de_Oliveira2012/tbl5.csv", sep = "\t")

In [6]:
tbl5.head()


Out[6]:
Identifier RA Dec SpT AV (mag) References J (mag) H (mag) Ks (mag) [3.6] (mag) [4.5] (mag) [5.6] (mag) [8.0] (mag) [24] (mag)
0 GY92 15 16:26:22.98 –24:28:46.1 M6 10.7 8 14.93  ±  0.04 12.80  ±  0.02 11.53  ±  0.02 10.41  ±  0.06 10.00  ±  0.06 9.50  ±  0.07 8.46  ±  0.09 6.11  ±  0.63
1 GY92 109 16:26:42.89 –24:22:59.1 M6 13.5 8 15.33  ±  0.05 12.82  ±  0.03 11.44  ±  0.02 10.18  ±  0.06 9.63  ±  0.06 9.11  ±  0.06 8.35  ±  0.09 6.74  ±  0.72
2 GY92 154 16:26:54.79 –24:27:02.1 M6 20.1 8 17.92  ±  0.05 14.91  ±  0.05 12.87  ±  0.05 11.13  ±  0.06 10.51  ±  0.06 10.00  ±  0.06 9.34  ±  0.09 5.85  ±  0.63
3 WL21 16:26:57.33 –24:35:38.7 M6 23.8 8 19.00  ±  0.05 15.07  ±  0.05 12.82  ±  0.05 11.41  ±  0.10 10.41  ±  0.06 9.96  ±  0.07 9.44  ±  0.09 6.93  ±  0.65
4 GY92 171 16:26:58.41 –24:21:30.0 M6 6.6 8 16.01  ±  0.07 13.11  ±  0.02 11.46  ±  0.02 10.09  ±  0.06 9.55  ±  0.06 9.11  ±  0.06 8.50  ±  0.09 5.80  ±  0.63

A few comments-

The tables are horizontally sub-divided into groups of similar properties (e.g. spectral type, spectral slope). One strategy to circumvent these dead rows is to label the group members according to the sub-division headings.
Also, notice that the value and error are separated by a \pm, which is fine for Latex, but a pain-in-the-ass for actually extracting and plotting values. I have a function that separates these columns, it should be run here.

The End.