back to the matplotlib-gallery
at https://github.com/rasbt/matplotlib-gallery
In [1]:
%load_ext watermark
In [2]:
%watermark -u -v -d -p matplotlib,numpy,scipy
In [3]:
%matplotlib inline
In [4]:
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import t
# Generating 15 random data points in the range 5-15 (inclusive)
X = np.random.randint(5, 15, 15)
# sample size
n = X.size
# mean
X_mean = np.mean(X)
# standard deviation
X_std = np.std(X)
# standard error
X_se = X_std / np.sqrt(n)
# alternatively:
# from scipy import stats
# stats.sem(X)
# 95% Confidence Interval
dof = n - 1 # degrees of freedom
alpha = 1.0 - 0.95
conf_interval = t.ppf(1-alpha/2., dof) * X_std*np.sqrt(1.+1./n)
fig = plt.gca()
plt.errorbar(1, X_mean, yerr=X_std, fmt='-o')
plt.errorbar(2, X_mean, yerr=X_se, fmt='-o')
plt.errorbar(3, X_mean, yerr=conf_interval, fmt='-o')
plt.xlim([0,4])
plt.ylim(X_mean-conf_interval-2, X_mean+conf_interval+2)
# axis formatting
fig.axes.get_xaxis().set_visible(False)
fig.spines["top"].set_visible(False)
fig.spines["right"].set_visible(False)
plt.tick_params(axis="both", which="both", bottom="off", top="off",
labelbottom="on", left="on", right="off", labelleft="on")
plt.legend(['Standard Deviation', 'Standard Error', 'Confidence Interval'],
loc='upper left',
numpoints=1,
fancybox=True)
plt.ylabel('random variable')
plt.title('15 random values in the range 5-15')
plt.show()
In [7]:
import matplotlib.pyplot as plt
# input data
mean_values = [1, 2, 3]
variance = [0.2, 0.4, 0.5]
bar_labels = ['bar 1', 'bar 2', 'bar 3']
fig = plt.gca()
# plot bars
x_pos = list(range(len(bar_labels)))
plt.bar(x_pos, mean_values, yerr=variance, align='center', alpha=0.5)
# set height of the y-axis
max_y = max(zip(mean_values, variance)) # returns a tuple, here: (3, 5)
plt.ylim([0, (max_y[0] + max_y[1]) * 1.1])
# set axes labels and title
plt.ylabel('variable y')
plt.xticks(x_pos, bar_labels)
plt.title('Bar plot with error bars')
# axis formatting
fig.axes.get_xaxis().set_visible(False)
fig.spines["top"].set_visible(False)
fig.spines["right"].set_visible(False)
plt.tick_params(axis="both", which="both", bottom="off", top="off",
labelbottom="on", left="on", right="off", labelleft="on")
plt.show()
In [ ]: