O-C_ephemeris.txt (已在files4examples資料夾中無須下載):
檔案說明(待補)
pulse-profile.txt (已在files4examples資料夾中無須下載):
檔案說明(待補)
QSOnumber.txt (已在files4examples資料夾中無須下載):
檔案說明(待補)
In [1]:
from astropy.io import ascii
radio_infrared_NLSy1 = ascii.read('../files4examples/Radio_Infrared_NLSy1.txt',names=['radio luminosity','infrared luminosity'])
radio_infrared_SG = ascii.read('../files4examples/Radio_Infrared_spiral.txt',names=['radio luminosity','infrared luminosity'])
radio_infrared_RG = ascii.read('../files4examples/Radio_Infrared_radio.txt',names=['radio luminosity','infrared luminosity'])
L_radio_NLSy1=radio_infrared_NLSy1['radio luminosity']
L_infrared_NLSy1=radio_infrared_NLSy1['infrared luminosity']
L_radio_SG=radio_infrared_SG['radio luminosity']
L_infrared_SG=radio_infrared_SG['infrared luminosity']
L_radio_RG=radio_infrared_RG['radio luminosity']
L_infrared_RG=radio_infrared_RG['infrared luminosity']
In [2]:
import numpy as np
x1=np.log10(L_radio_NLSy1)
x2=np.log10(L_radio_SG)
x3=np.log10(L_radio_RG)
y1=np.log10(L_infrared_NLSy1)
y2=np.log10(L_infrared_SG)
y3=np.log10(L_infrared_RG)
p_NLSy1 = np.poly1d(np.polyfit(x1,y1,1))
p_SG = np.poly1d(np.polyfit(x2,y2,1))
p_RG = np.poly1d(np.polyfit(x3,y3,1))
In [3]:
%matplotlib notebook
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111,aspect='equal')
plt.xlim(32,40)
plt.ylim(20,28)
x = np.linspace(32,40,100)
plt.scatter(x1,y1,facecolor='none',edgecolor='r',marker='D')
plt.plot(x,p_NLSy1(x),'r-')
plt.scatter(x2,y2,color='k',marker='+',s=80)
plt.plot(x,p_SG(x),'k-')
plt.scatter(x3,y3,facecolor='none',edgecolor='k',marker='^',s=80)
plt.plot(x,p_RG(x),'k--')
plt.xlabel(r'$\nu$ L$_\nu$ [22$\mu$m] log(W)')
plt.ylabel(r'$L_\nu$ [1.4GHz] log(W/Hz)')
plt.legend(('NLSy1','SG','RG'),loc='upper left')
plt.show()
In [4]:
print(np.polyfit(x1,y1,1))
In [5]:
print(np.polyfit(x2,y2,1))
In [6]:
print(np.polyfit(x3,y3,1))
In [7]:
from astropy.io import ascii
radio_infrared_NLSy1 = ascii.read('../files4examples/Radio_Infrared_NLSy1.txt',names=['radio luminosity','infrared luminosity'])
radio_infrared_SG = ascii.read('../files4examples/Radio_Infrared_spiral.txt',names=['radio luminosity','infrared luminosity'])
radio_infrared_RG = ascii.read('../files4examples/Radio_Infrared_radio.txt',names=['radio luminosity','infrared luminosity'])
L_radio_NLSy1=radio_infrared_NLSy1['radio luminosity']
L_infrared_NLSy1=radio_infrared_NLSy1['infrared luminosity']
L_radio_SG=radio_infrared_SG['radio luminosity']
L_infrared_SG=radio_infrared_SG['infrared luminosity']
L_radio_RG=radio_infrared_RG['radio luminosity']
L_infrared_RG=radio_infrared_RG['infrared luminosity']
In [8]:
import numpy as np
x1=np.log10(L_radio_NLSy1)
x2=np.log10(L_radio_SG)
x3=np.log10(L_radio_RG)
y1=np.log10(L_infrared_NLSy1)
y2=np.log10(L_infrared_SG)
y3=np.log10(L_infrared_RG)
x = np.linspace(32,40,100)
In [9]:
A1 = np.vstack([x1, np.ones(len(x1))]).T
m1,c1 = np.linalg.lstsq(A1, y1)[0]
A2 = np.vstack([x2, np.ones(len(x2))]).T
m2,c2 = np.linalg.lstsq(A2, y2)[0]
A3 = np.vstack([x3, np.ones(len(x3))]).T
m3,c3 = np.linalg.lstsq(A3, y3)[0]
# Example
# y = Ap, where A = [[x 1]] and p = [[m], [c]]
# x = np.array([0, 1, 2, 3])
# A = np.vstack([x, np.ones(len(x))]).T
# A =
# array([[ 0., 1.],
# [ 1., 1.],
# [ 2., 1.],
# [ 3., 1.]])
# len() : 求出矩陣中元素個數
# ones() : 令矩陣中所有元素的值等於 1
# vstack().T : 將兩個矩陣進行堆疊並轉置
In [10]:
%matplotlib notebook
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111,aspect='equal')
plt.xlim(32,40)
plt.ylim(20,28)
plt.scatter(x1, y1,facecolor='none',edgecolor='r',marker='D')
plt.plot(x, m1*x + c1, 'r',label='NLSy1')
plt.scatter(x2, y2,color='k',marker='+',s=80)
plt.plot(x, m2*x + c2, 'k', label='SG')
plt.scatter(x3, y3,facecolor='none',edgecolor='k',marker='^',s=80)
plt.plot(x, m3*x + c3, 'k--', label='RG')
plt.xlabel(r'$\nu$ $L_\nu$ [22$\mu$m] log(W)')
plt.ylabel(r'$L_\nu$ [1.4GHz] log(W/Hz)')
plt.legend(('NLSy1','SG','RG'),loc='upper left')
plt.show()
In [11]:
print(m1, c1)
print(m2, c2)
print(m3, c3)
In [12]:
from astropy.io import ascii
radio_infrared_NLSy1 = ascii.read('../files4examples/Radio_Infrared_NLSy1.txt',names=['radio luminosity','infrared luminosity'])
radio_infrared_SG = ascii.read('../files4examples/Radio_Infrared_spiral.txt',names=['radio luminosity','infrared luminosity'])
radio_infrared_RG = ascii.read('../files4examples/Radio_Infrared_radio.txt',names=['radio luminosity','infrared luminosity'])
L_radio_NLSy1=radio_infrared_NLSy1['radio luminosity']
L_infrared_NLSy1=radio_infrared_NLSy1['infrared luminosity']
L_radio_SG=radio_infrared_SG['radio luminosity']
L_infrared_SG=radio_infrared_SG['infrared luminosity']
L_radio_RG=radio_infrared_RG['radio luminosity']
L_infrared_RG=radio_infrared_RG['infrared luminosity']
In [13]:
import numpy as np
x1=np.log10(L_radio_NLSy1)
x2=np.log10(L_radio_SG)
x3=np.log10(L_radio_RG)
y1=np.log10(L_infrared_NLSy1)
y2=np.log10(L_infrared_SG)
y3=np.log10(L_infrared_RG)
from scipy import stats
slope_1, intercept_1, r_value_1, p_value_1, std_err_1 = stats.linregress(x1,y1)
slope_2, intercept_2, r_value_2, p_value_2, std_err_2 = stats.linregress(x2,y2)
slope_3, intercept_3, r_value_3, p_value_3, std_err_3 = stats.linregress(x3,y3)
In [14]:
%matplotlib notebook
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111,aspect='equal')
plt.xlim(32,40)
plt.ylim(20,28)
x = np.linspace(32,40,100)
plt.scatter(x1,y1,facecolor='none',edgecolor='r',marker='D')
plt.plot(x,slope_1*x+intercept_1,'r-')
plt.scatter(x2,y2,color='k',marker='+',s=80)
plt.plot(x,slope_2*x+intercept_2,'k-')
plt.scatter(x3,y3,facecolor='none',edgecolor='k',marker='^',s=80)
plt.plot(x,slope_3*x+intercept_3,'k--')
plt.xlabel(r'$\nu$ $L_\nu$ [22$\mu$m] log(W)')
plt.ylabel(r'$L_\nu$ [1.4GHz] log(W/Hz)')
plt.legend(('NLSy1','SG','RG'),loc='upper left')
plt.show()
In [15]:
print(slope_1, intercept_1, r_value_1, p_value_1, std_err_1)
In [16]:
print(slope_2, intercept_2, r_value_2, p_value_2, std_err_2)
In [17]:
print(slope_3, intercept_3, r_value_3, p_value_3, std_err_3)
In [18]:
from astropy.io import ascii
oc_ephemeris = ascii.read('../files4examples/O-C_ephemeris.txt', names=['cycles', 'delay', 'error'])
cycles = oc_ephemeris['cycles']
delay = oc_ephemeris['delay']
error = oc_ephemeris['error']
In [19]:
import numpy as np
p2 = np.poly1d(np.polyfit(cycles, delay, 2))
p3 = np.poly1d(np.polyfit(cycles, delay, 3))
x = np.linspace(-10000, 50000, 100)
In [20]:
%matplotlib notebook
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
fig = plt.figure()
ax = fig.add_subplot(111)
plt.errorbar(cycles, delay, yerr=error, fmt='sk')
plt.hold(True)
plt.plot(x, p2(x), 'r-')
plt.plot(x, p3(x), '--')
plt.hold(False)
plt.ylim(-0.005, 0.03)
plt.legend(('Second', 'Third', 'Data'))
plt.xlabel('N (cycles)')
plt.ylabel('Delay (days)')
ax.xaxis.set_major_formatter(ScalarFormatter(useMathText=True))
ax.ticklabel_format(axis='x', style='sci', scilimits=(0,0))
plt.show()
pip install astroML
pip install astroML_addons
In [21]:
from astropy.io import ascii
pulse_profile = ascii.read('../files4examples/pulse-profile.txt', names=['phase', 'rate', 'error'])
phase = pulse_profile['phase']
rate =pulse_profile['rate']
error = pulse_profile['error']
In [22]:
import numpy as np
from astroML.linear_model import LinearRegression
x = np.array([np.sin(2 * np.pi * phase), np.cos(2 * np.pi * phase),
np.sin(4 * np.pi * phase), np.cos(4 * np.pi * phase)]).T
model = LinearRegression()
model.fit(x, rate, error)
coef = model.coef_
y_pred = model.predict(x)
print(coef)
In [23]:
%matplotlib notebook
import matplotlib.pyplot as plt
phase2 = np.append(phase, phase + 1)
rate2 = np.append(rate, rate)
error2 = np.append(error, error)
y_pred2 = np.append(y_pred, y_pred)
plt.figure()
plt.errorbar(phase2, rate2, yerr=error2, fmt="*k", label='Data')
plt.hold(True)
plt.plot(phase2, y_pred2, 'r-', label='Model')
plt.hold(False)
plt.xlabel('Phase')
plt.ylabel('Conuts/s')
plt.legend()
plt.show()
In [24]:
from astropy.io import ascii
pulse_profile = ascii.read('../files4examples/pulse-profile.txt', names=['phase', 'rate', 'error'])
phase = pulse_profile['phase']
rate =pulse_profile['rate']
error = pulse_profile['error']
In [25]:
from scipy.optimize import curve_fit
import numpy as np
# 定義模型
def model(x, a0, a1, a2, a3, a4):
return ( a0 + a1 * np.sin(2 * np.pi * x) + a2 * np.cos(2 * np.pi * x) +
a3 * np.sin(4 * np.pi * x) + a4 * np.cos(4 * np.pi * x) )
# 曲線擬合
popt, pcov = curve_fit(model, phase, rate, sigma=error)
perr = np.sqrt(np.diag(pcov))
print(popt)
print(pcov)
print("a0 =", popt[0], "+/-", perr[0])
print("a1 =", popt[1], "+/-", perr[1])
print("a2 =", popt[2], "+/-", perr[2])
print("a3 =", popt[3], "+/-", perr[3])
print("a4 =", popt[4], "+/-", perr[4])
In [26]:
%matplotlib notebook
import matplotlib.pyplot as plt
phase2 = np.append(phase, phase + 1)
rate2 = np.append(rate, rate)
error2 = np.append(error, error)
plt.figure()
plt.errorbar(phase2, rate2, yerr=error2, fmt="*k", label='Data')
plt.hold(True)
plt.plot(phase2, model(phase2, popt[0], popt[1], popt[2], popt[3], popt[4]), 'r-', label='Model')
plt.hold(False)
plt.xlabel('Phase')
plt.ylabel('Conuts/s')
plt.legend()
plt.show()
In [27]:
from astropy.io import ascii
data = ascii.read('../files4examples/QSOnumber.txt')
x = data['x']
y = data['y']
In [28]:
from astropy.modeling import models as mo, fitting as fit
import numpy as np
model_init = mo.Gaussian1D(amplitude=4220, mean=-0.25, stddev=0.1)
fitter = fit.LevMarLSQFitter()
fit_res = fitter(model_init, x, y)
print(fit_res.amplitude)
print(fit_res.mean)
print(fit_res.stddev)
In [29]:
%matplotlib notebook
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
plt.bar(x, y, width=x[1]-x[0], align='center', edgecolor='black', fill=False)
plt.hold(True)
plt.plot(x, fit_res(x), 'r')
plt.hold(False)
plt.xlim(-0.6, 0.6)
plt.ylim(0, 5000)
plt.xlabel('log($f_{\lambda_{3100A}}$ / $f_{\lambda_{2200A}}$)', fontsize=20)
plt.ylabel('Numbers of QSO', fontsize=20)
ax.tick_params(axis='y', labelsize=20)
plt.xticks(np.arange(-0.4,0.5,0.2), fontsize=20)
plt.show()
In [30]:
from astropy.io import ascii
pulse_profile = ascii.read('../files4examples/pulse-profile.txt', names=['phase', 'rate', 'error'])
phase = pulse_profile['phase']
rate =pulse_profile['rate']
error = pulse_profile['error']
In [31]:
from astropy.modeling import models as mo, fitting as fit
import numpy as np
# 不給初始值, 使用預設初始值
mo_init = (mo.Const1D() +
mo.Sine1D(frequency=1, fixed={'frequency':True, 'phase':True}) +
mo.Sine1D(frequency=1, phase=0.25, fixed={'frequency':True, 'phase':True}) +
mo.Sine1D(frequency=2, fixed={'frequency':True, 'phase':True}) +
mo.Sine1D(frequency=2, phase=0.25, fixed={'frequency':True, 'phase':True}))
# 給初始值
# mo_init = (mo.Const1D(amplitude=np.mean(rate)) +
# mo.Sine1D(amplitude=-0.7, frequency=1, fixed={'frequency':True, 'phase':True}) +
# mo.Sine1D(amplitude=2, frequency=1, phase=0.25, fixed={'frequency':True, 'phase':True}) +
# mo.Sine1D(amplitude=0.7, frequency=2, fixed={'frequency':True, 'phase':True}) +
# mo.Sine1D(amplitude=0.6, frequency=2, phase=0.25, fixed={'frequency':True, 'phase':True}))
fitter = fit.LevMarLSQFitter()
fit_res = fitter(mo_init, phase, rate)
a0 = fit_res.amplitude_0.value
a1 = fit_res.amplitude_1.value
a2 = fit_res.amplitude_2.value
a3 = fit_res.amplitude_3.value
a4 = fit_res.amplitude_4.value
print(a0, a1, a2, a3, a4)
In [32]:
%matplotlib notebook
import matplotlib.pyplot as plt
phase2 = np.append(phase, phase + 1)
rate2 = np.append(rate, rate)
error2 = np.append(error, error)
plt.figure()
plt.errorbar(phase2, rate2, yerr=error2, fmt='*k')
plt.hold(True)
plt.plot(phase2, fit_res(phase2), 'r')
plt.hold(False)
plt.legend(('Model', 'Data'))
plt.xlabel('Phase')
plt.ylabel('Conuts/s')
plt.show()
In [33]:
# Gaussian fit 的 function
def get_gaussfit(bin_img):
'''
Propose: to fit an 2D image with an 2D gaussian function
initial guess of parameters:
x_mean & y_mean at the center of the image
x_width & y_width = 2 pixels
amplitude = max(image)
best parameters were optimized by least-square method
Parameter
----------------------
bin_img: an 2D image
======================
Output
----------------------
object of fitting.LevMarLSQFitter()
'''
x_size=bin_img.shape[0]
y_size=bin_img.shape[1]
p_init = models.Gaussian2D(amplitude=np.max(bin_img),x_mean=0.5*x_size,y_mean=0.5*y_size,x_stddev=2,y_stddev=2)
y, x = np.mgrid[:bin_img.shape[1], :bin_img.shape[0]]
fit_p = fitting.LevMarLSQFitter()
p = fit_p(p_init, x,y,bin_img)
return p;
import numpy as np
import astropy.units as units
import matplotlib.pyplot as plt
from astropy.table import Table
from astroquery.vizier import Vizier
from astropy.coordinates import SkyCoord
from astropy.io import ascii
from astropy.modeling import models, fitting
#catalog_list = Vizier.find_catalogs('PPMXL')
#取消回傳的 row <= 50的限制
Vizier.ROW_LIMIT = -1
#建立格點
x=36 #全天
y=17 #全天
grid_x=np.arange(x)*10
grid_y=np.arange(y)*10-80
# 定義輸出的表格
result_table = Table(names=('RA', 'DE', 'mRA_offset','mDE_offset'), dtype=('f4', 'f4', 'f4', 'f4'))
result_table['RA'].unit=units.deg
result_table['DE'].unit=units.deg
result_table['mRA_offset'].unit=units.mas/units.year
result_table['mDE_offset'].unit=units.mas/units.year
#對每個格點在 Vizier上 query PPMXL, 搜尋半徑 10 arcminutes
for x in grid_x:
for y in grid_y:
result = Vizier.query_region(SkyCoord(ra=x*units.deg, dec=y*units.deg,frame="icrs"), radius=10.0*units.arcmin, catalog=('I/317'))
#name=str(x)+'_'+str(y)+'.csv'
#ascii.write(result[0], name, format='csv')
#plt.plot(result[0]['pmRA'],result[0]['pmDE'],'r.')
bin_img, yedges, xedges = np.histogram2d(result[0]['pmRA'], result[0]['pmDE'], (20,20),range=[[-100,100],[-100,100]])
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
#plt.imshow(bin_img, extent=extent, interpolation='nearest', cmap='gist_yarg', origin='lower')
fit_results=get_gaussfit(bin_img)
ra_off=(fit_results.x_mean-(bin_img.shape[0]*0.5))*10
de_off=(fit_results.y_mean-(bin_img.shape[1]*0.5))*10
#theta=1./np.cos(y)*
result_table.add_row([x,y,ra_off,de_off])
In [ ]:
result_table
In [ ]:
%matplotlib inline
plt.quiver(result_table['RA'],result_table['DE'],result_table['mRA_offset'],result_table['mDE_offset'])