In this notebook, we'll learn how to use GANs to do semi-supervised learning.

In supervised learning, we have a training set of inputs $x$ and class labels $y$. We train a model that takes $x$ as input and gives $y$ as output.

In semi-supervised learning, our goal is still to train a model that takes $x$ as input and generates $y$ as output. However, not all of our training examples have a label $y$. We need to develop an algorithm that is able to get better at classification by studying both labeled $(x, y)$ pairs and unlabeled $x$ examples.

To do this for the SVHN dataset, we'll turn the GAN discriminator into an 11 class discriminator. It will recognize the 10 different classes of real SVHN digits, as well as an 11th class of fake images that come from the generator. The discriminator will get to train on real labeled images, real unlabeled images, and fake images. By drawing on three sources of data instead of just one, it will generalize to the test set much better than a traditional classifier trained on only one source of data.


In [21]:
%matplotlib inline

import pickle as pkl
import time

import matplotlib.pyplot as plt
import numpy as np
from scipy.io import loadmat
import tensorflow as tf

extra_class = 1

In [2]:
!mkdir data

In [3]:
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm

data_dir = 'data/'

if not isdir(data_dir):
    raise Exception("Data directory doesn't exist!")

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(data_dir + "train_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/train_32x32.mat',
            data_dir + 'train_32x32.mat',
            pbar.hook)

if not isfile(data_dir + "test_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/test_32x32.mat',
            data_dir + 'test_32x32.mat',
            pbar.hook)


SVHN Training Set: 182MB [00:21, 8.43MB/s]                                                                             
SVHN Training Set: 64.3MB [00:11, 5.66MB/s]                                                                            

In [4]:
trainset = loadmat(data_dir + 'train_32x32.mat')
testset = loadmat(data_dir + 'test_32x32.mat')

In [5]:
idx = np.random.randint(0, trainset['X'].shape[3], size=36)
fig, axes = plt.subplots(6, 6, sharex=True, sharey=True, figsize=(5,5),)
for ii, ax in zip(idx, axes.flatten()):
    ax.imshow(trainset['X'][:,:,:,ii], aspect='equal')
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
plt.subplots_adjust(wspace=0, hspace=0)



In [6]:
def scale(x, feature_range=(-1, 1)):
    # scale to (0, 1)
    x = ((x - x.min())/(255 - x.min()))
    
    # scale to feature_range
    min, max = feature_range
    x = x * (max - min) + min
    return x

In [7]:
class Dataset:
    def __init__(self, train, test, val_frac=0.5, shuffle=True, scale_func=None):
        split_idx = int(len(test['y'])*(1 - val_frac))
        self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
        self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
        self.train_x, self.train_y = train['X'], train['y']
        # The SVHN dataset comes with lots of labels, but for the purpose of this exercise,
        # we will pretend that there are only 1000.
        # We use this mask to say which labels we will allow ourselves to use.
        self.label_mask = np.zeros_like(self.train_y)
        self.label_mask[0:1000] = 1
        
        self.train_x = np.rollaxis(self.train_x, 3)
        self.valid_x = np.rollaxis(self.valid_x, 3)
        self.test_x = np.rollaxis(self.test_x, 3)
        
        if scale_func is None:
            self.scaler = scale
        else:
            self.scaler = scale_func
        self.train_x = self.scaler(self.train_x)
        self.valid_x = self.scaler(self.valid_x)
        self.test_x = self.scaler(self.test_x)
        self.shuffle = shuffle
        
    def batches(self, batch_size, which_set="train"):
        x_name = which_set + "_x"
        y_name = which_set + "_y"
        
        num_examples = len(getattr(dataset, y_name))
        if self.shuffle:
            idx = np.arange(num_examples)
            np.random.shuffle(idx)
            setattr(dataset, x_name, getattr(dataset, x_name)[idx])
            setattr(dataset, y_name, getattr(dataset, y_name)[idx])
            if which_set == "train":
                dataset.label_mask = dataset.label_mask[idx]
        
        dataset_x = getattr(dataset, x_name)
        dataset_y = getattr(dataset, y_name)
        for ii in range(0, num_examples, batch_size):
            x = dataset_x[ii:ii+batch_size]
            y = dataset_y[ii:ii+batch_size]
            
            if which_set == "train":
                # When we use the data for training, we need to include
                # the label mask, so we can pretend we don't have access
                # to some of the labels, as an exercise of our semi-supervised
                # learning ability
                yield x, y, self.label_mask[ii:ii+batch_size]
            else:
                yield x, y

In [8]:
def model_inputs(real_dim, z_dim):
    inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    y = tf.placeholder(tf.int32, (None), name='y')
    label_mask = tf.placeholder(tf.int32, (None), name='label_mask')
    
    return inputs_real, inputs_z, y, label_mask

In [9]:
def generator(z, output_dim, reuse=False, alpha=0.2, training=True, size_mult=128):
    with tf.variable_scope('generator', reuse=reuse):
        # First fully connected layer
        x1 = tf.layers.dense(z, 4 * 4 * size_mult * 4)
        # Reshape it to start the convolutional stack
        x1 = tf.reshape(x1, (-1, 4, 4, size_mult * 4))
        x1 = tf.layers.batch_normalization(x1, training=training)
        x1 = tf.maximum(alpha * x1, x1)
        
        x2 = tf.layers.conv2d_transpose(x1, size_mult * 2, 5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=training)
        x2 = tf.maximum(alpha * x2, x2)
        
        x3 = tf.layers.conv2d_transpose(x2, size_mult, 5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=training)
        x3 = tf.maximum(alpha * x3, x3)
        
        # Output layer
        logits = tf.layers.conv2d_transpose(x3, output_dim, 5, strides=2, padding='same')
        
        out = tf.tanh(logits)
        
        return out

In [12]:
def discriminator(x, reuse=False, alpha=0.2, drop_rate=0., num_classes=10, size_mult=64):
    with tf.variable_scope('discriminator', reuse=reuse):
        x = tf.layers.dropout(x, rate=drop_rate/2.5)
        
        # Input layer is 32x32x3
        x1 = tf.layers.conv2d(x, size_mult, 3, strides=2, padding='same')
        relu1 = tf.maximum(alpha * x1, x1)
        relu1 = tf.layers.dropout(relu1, rate=drop_rate)
        
        x2 = tf.layers.conv2d(relu1, size_mult, 3, strides=2, padding='same')
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * x2, x2)
        
        
        x3 = tf.layers.conv2d(relu2, size_mult, 3, strides=2, padding='same')
        bn3 = tf.layers.batch_normalization(x3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        relu3 = tf.layers.dropout(relu3, rate=drop_rate)
        
        x4 = tf.layers.conv2d(relu3, 2 * size_mult, 3, strides=1, padding='same')
        bn4 = tf.layers.batch_normalization(x4, training=True)
        relu4 = tf.maximum(alpha * bn4, bn4)
        
        x5 = tf.layers.conv2d(relu4, 2 * size_mult, 3, strides=1, padding='same')
        bn5 = tf.layers.batch_normalization(x5, training=True)
        relu5 = tf.maximum(alpha * bn5, bn5)
        
        x6 = tf.layers.conv2d(relu5, 2 * size_mult, 3, strides=2, padding='same')
        bn6 = tf.layers.batch_normalization(x6, training=True)
        relu6 = tf.maximum(alpha * bn6, bn6)
        relu6 = tf.layers.dropout(relu6, rate=drop_rate)
        
        x7 = tf.layers.conv2d(relu5, 2 * size_mult, 3, strides=1, padding='valid')
        # Don't use bn on this layer, because bn would set the mean of each feature
        # to the bn mu parameter.
        # This layer is used for the feature matching loss, which only works if
        # the means can be different when the discriminator is run on the data than
        # when the discriminator is run on the generator samples.
        relu7 = tf.maximum(alpha * x7, x7)
        
        # Flatten it by global average pooling
        features = tf.reduce_mean(relu7, (1, 2))
        
        # Set class_logits to be the inputs to a softmax distribution over the different classes
        class_logits = tf.layers.dense(features, num_classes + extra_class)
        
        # Set gan_logits such that P(input is real | input) = sigmoid(gan_logits).
        # Keep in mind that class_logits gives you the probability distribution over all the real
        # classes and the fake class. You need to work out how to transform this multiclass softmax
        # distribution into a binary real-vs-fake decision that can be described with a sigmoid.
        # Numerical stability is very important.
        # You'll probably need to use this numerical stability trick:
        # log sum_i exp a_i = m + log sum_i exp(a_i - m).
        # This is numerically stable when m = max_i a_i.
        # (It helps to think about what goes wrong when...
        #   1. One value of a_i is very large
        #   2. All the values of a_i are very negative
        # This trick and this value of m fix both those cases, but the naive implementation and
        # other values of m encounter various problems)
        if extra_class:
            real_class_logits, fake_class_logits = tf.split(class_logits, [num_classes, 1], 1)
            assert fake_class_logits.get_shape()[1] == 1, fake_class_logits.get_shape()
            fake_class_logits = tf.squeeze(fake_class_logits)
        else:
            real_class_logits = class_logits
            fake_class_logits = 0.0
            
        mx = tf.reduce_max(real_class_logits, 1, keep_dims=True)
        stable_real_class_logits = real_class_logits - mx
        
        gan_logits = tf.log(
            tf.reduce_sum(
                tf.exp(stable_real_class_logits),
                1
            )
        ) + tf.squeeze(mx) - fake_class_logits
        
        out = tf.nn.softmax(class_logits)
        
        return out, class_logits, gan_logits, features

In [14]:
def model_loss(input_real, input_z, output_dim, y, num_classes, label_mask, alpha=0.2, drop_rate=0.):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param output_dim: The number of channels in the output image
    :param y: Integer class labels
    :param num_classes: The number of classes
    :param alpha: The slope of the left half of leaky ReLU activation
    :param drop_rate: The probability of dropping a hidden unit
    :return: A tuple of (discriminator loss, generator loss)
    """
    
    # These numbers multiply the size of each layer of the generator and the discriminator,
    # respectively. You can reduce them to run your code faster for debugging purposes.
    g_size_mult = 32
    d_size_mult = 64
    
    # Here we run the generator and the discriminator
    g_model = generator(input_z, output_dim, alpha=alpha, size_mult=g_size_mult)
    d_on_data = discriminator(input_real, alpha=alpha, drop_rate=drop_rate, size_mult=d_size_mult)
    d_model_real, class_logits_on_data, gan_logits_on_data, data_features = d_on_data
    d_on_samples = discriminator(g_model, reuse=True, alpha=alpha, drop_rate=drop_rate, size_mult=d_size_mult)
    d_model_fake, class_logits_on_samples, gan_logits_on_samples, sample_features = d_on_samples
    
    
    # Here we compute `d_loss`, the loss for the discriminator.
    # This should combine two different losses:
    #  1. The loss for the GAN problem, where we minimize the cross-entropy for the binary
    #     real-vs-fake classification problem.
    #  2. The loss for the SVHN digit classification problem, where we minimize the cross-entropy
    #     for the multi-class softmax. For this one we use the labels. Don't forget to ignore
    #     use `label_mask` to ignore the examples that we are pretending are unlabeled for the
    #     semi-supervised learning problem.
    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(
            logits=gan_logits_on_data,
            labels=tf.ones_like(gan_logits_on_data)
        )
    )    
    
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(
            logits=gan_logits_on_samples,
            labels=tf.zeros_like(gan_logits_on_samples)
        )
    )
    
    y = tf.squeeze(y)
    class_cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        logits=class_logits_on_data,
        labels=tf.one_hot(
            y,
            num_classes + extra_class,
            dtype=tf.float32
        )
    )
    class_cross_entropy = tf.squeeze(class_cross_entropy)
    label_mask = tf.squeeze(tf.to_float(label_mask))
    d_loss_class = tf.reduce_sum(label_mask * class_cross_entropy) / tf.maximum(1.0, tf.reduce_sum(label_mask))
    
    d_loss = d_loss_class + d_loss_real + d_loss_fake
    
    # Here we set `g_loss` to the "feature matching" loss invented by Tim Salimans at OpenAI.
    # This loss consists of minimizing the absolute difference between the expected features
    # on the data and the expected features on the generated samples.
    # This loss works better for semi-supervised learning than the tradition GAN losses.
    data_moments = tf.reduce_mean(data_features, axis=0)
    sample_moments = tf.reduce_mean(sample_features, axis=0)
    g_loss = tf.reduce_mean(tf.abs(data_moments - sample_moments))

    pred_class = tf.cast(tf.argmax(class_logits_on_data, 1), tf.int32)
    eq = tf.equal(tf.squeeze(y), pred_class)
    correct = tf.reduce_sum(tf.to_float(eq))
    masked_correct = tf.reduce_sum(label_mask * tf.to_float(eq))
    
    return d_loss, g_loss, correct, masked_correct, g_model

In [15]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # Get weights and biases to update. Get them separately for the discriminator and the generator
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]
    for t in t_vars:
        assert t in d_vars or t in g_vars

    # Minimize both players' costs simultaneously
    d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
    g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    shrink_lr = tf.assign(learning_rate, learning_rate * 0.9)
    
    return d_train_opt, g_train_opt, shrink_lr

In [16]:
class GAN:
    """
    A GAN model.
    :param real_size: The shape of the real data.
    :param z_size: The number of entries in the z code vector.
    :param learnin_rate: The learning rate to use for Adam.
    :param num_classes: The number of classes to recognize.
    :param alpha: The slope of the left half of the leaky ReLU activation
    :param beta1: The beta1 parameter for Adam.
    """
    def __init__(self, real_size, z_size, learning_rate, num_classes=10, alpha=0.2, beta1=0.5):
        tf.reset_default_graph()
        
        self.learning_rate = tf.Variable(learning_rate, trainable=False)
        inputs = model_inputs(real_size, z_size)
        self.input_real, self.input_z, self.y, self.label_mask = inputs
        self.drop_rate = tf.placeholder_with_default(.5, (), "drop_rate")
        
        loss_results = model_loss(self.input_real, self.input_z,
                                  real_size[2], self.y, num_classes,
                                  label_mask=self.label_mask,
                                  alpha=0.2,
                                  drop_rate=self.drop_rate)
        self.d_loss, self.g_loss, self.correct, self.masked_correct, self.samples = loss_results
        
        self.d_opt, self.g_opt, self.shrink_lr = model_opt(self.d_loss, self.g_loss, self.learning_rate, beta1)

In [17]:
def view_samples(epoch, samples, nrows, ncols, figsize=(5,5)):
    fig, axes = plt.subplots(figsize=figsize, nrows=nrows, ncols=ncols, 
                             sharey=True, sharex=True)
    for ax, img in zip(axes.flatten(), samples[epoch]):
        ax.axis('off')
        img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
        ax.set_adjustable('box-forced')
        im = ax.imshow(img)
   
    plt.subplots_adjust(wspace=0, hspace=0)
    return fig, axes

In [18]:
def train(net, dataset, epochs, batch_size, figsize=(5,5)):
    
    saver = tf.train.Saver()
    sample_z = np.random.normal(0, 1, size=(50, z_size))

    samples, train_accuracies, test_accuracies = [], [], []
    steps = 0

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for e in range(epochs):
            print("Epoch",e)
            
            t1e = time.time()
            num_examples = 0
            num_correct = 0
            for x, y, label_mask in dataset.batches(batch_size):
                assert 'int' in str(y.dtype)
                steps += 1
                num_examples += label_mask.sum()

                # Sample random noise for G
                batch_z = np.random.normal(0, 1, size=(batch_size, z_size))

                # Run optimizers
                t1 = time.time()
                _, _, correct = sess.run([net.d_opt, net.g_opt, net.masked_correct],
                                         feed_dict={net.input_real: x, net.input_z: batch_z,
                                                    net.y : y, net.label_mask : label_mask})
                t2 = time.time()
                num_correct += correct

            sess.run([net.shrink_lr])
            
            
            train_accuracy = num_correct / float(num_examples)
            
            print("\t\tClassifier train accuracy: ", train_accuracy)
            
            num_examples = 0
            num_correct = 0
            for x, y in dataset.batches(batch_size, which_set="test"):
                assert 'int' in str(y.dtype)
                num_examples += x.shape[0]

                correct, = sess.run([net.correct], feed_dict={net.input_real: x,
                                                   net.y : y,
                                                   net.drop_rate: 0.})
                num_correct += correct
            
            test_accuracy = num_correct / float(num_examples)
            print("\t\tClassifier test accuracy", test_accuracy)
            print("\t\tStep time: ", t2 - t1)
            t2e = time.time()
            print("\t\tEpoch time: ", t2e - t1e)
            
            
            gen_samples = sess.run(
                                   net.samples,
                                   feed_dict={net.input_z: sample_z})
            samples.append(gen_samples)
            _ = view_samples(-1, samples, 5, 10, figsize=figsize)
            plt.show()
            
            
            # Save history of accuracies to view after training
            train_accuracies.append(train_accuracy)
            test_accuracies.append(test_accuracy)
            

        saver.save(sess, './checkpoints/generator.ckpt')

    with open('samples.pkl', 'wb') as f:
        pkl.dump(samples, f)
    
    return train_accuracies, test_accuracies, samples

In [19]:
!mkdir checkpoints

In [22]:
real_size = (32,32,3)
z_size = 100
learning_rate = 0.0003

net = GAN(real_size, z_size, learning_rate)


[<tf.Tensor 'gradients/discriminator_1/split_grad/concat:0' shape=(?, 11) dtype=float32>, None, None]
[<tf.Tensor 'gradients/discriminator/split_grad/concat:0' shape=(?, 11) dtype=float32>, None, None]

In [23]:
dataset = Dataset(trainset, testset)

batch_size = 128
epochs = 25
train_accuracies, test_accuracies, samples = train(net,
                                                   dataset,
                                                   epochs,
                                                   batch_size,
                                                   figsize=(10,5))


Epoch 0
		Classifier train accuracy:  0.092
		Classifier test accuracy 0.139827904118
		Step time:  1.2474071979522705
		Epoch time:  950.140257358551
Epoch 1
		Classifier train accuracy:  0.143
		Classifier test accuracy 0.176859250154
		Step time:  1.2610535621643066
		Epoch time:  867.193324804306
Epoch 2
		Classifier train accuracy:  0.27
		Classifier test accuracy 0.243700061463
		Step time:  1.2121379375457764
		Epoch time:  866.7383484840393
Epoch 3
		Classifier train accuracy:  0.434
		Classifier test accuracy 0.417947141979
		Step time:  1.2588837146759033
		Epoch time:  868.2511079311371
Epoch 4
		Classifier train accuracy:  0.607
		Classifier test accuracy 0.505224339275
		Step time:  1.234212875366211
		Epoch time:  868.9263739585876
Epoch 5
		Classifier train accuracy:  0.725
		Classifier test accuracy 0.592885679164
		Step time:  1.2576026916503906
		Epoch time:  871.3471393585205
Epoch 6
		Classifier train accuracy:  0.808
		Classifier test accuracy 0.540488629379
		Step time:  1.2244055271148682
		Epoch time:  873.2060253620148
Epoch 7
		Classifier train accuracy:  0.876
		Classifier test accuracy 0.553549477566
		Step time:  1.292619228363037
		Epoch time:  870.1232612133026
Epoch 8
		Classifier train accuracy:  0.918
		Classifier test accuracy 0.574907805778
		Step time:  1.2753818035125732
		Epoch time:  865.8678140640259
Epoch 9
		Classifier train accuracy:  0.926
		Classifier test accuracy 0.618315918869
		Step time:  1.2331507205963135
		Epoch time:  884.543021440506
Epoch 10
		Classifier train accuracy:  0.968
		Classifier test accuracy 0.642593730793
		Step time:  1.2371501922607422
		Epoch time:  876.2767395973206
Epoch 11
		Classifier train accuracy:  0.966
		Classifier test accuracy 0.648509526736
		Step time:  1.2544395923614502
		Epoch time:  871.0387063026428
Epoch 12
		Classifier train accuracy:  0.986
		Classifier test accuracy 0.61578057775
		Step time:  1.258185625076294
		Epoch time:  884.27019572258
Epoch 13
		Classifier train accuracy:  0.98
		Classifier test accuracy 0.527120467117
		Step time:  1.2594413757324219
		Epoch time:  888.3278136253357
Epoch 14
		Classifier train accuracy:  0.986
		Classifier test accuracy 0.602566072526
		Step time:  1.2262098789215088
		Epoch time:  873.1223287582397
Epoch 15
		Classifier train accuracy:  0.998
		Classifier test accuracy 0.649892440074
		Step time:  1.2417733669281006
		Epoch time:  873.026417016983
Epoch 16
		Classifier train accuracy:  0.995
		Classifier test accuracy 0.666410571604
		Step time:  1.2683346271514893
		Epoch time:  892.423882484436
Epoch 17
		Classifier train accuracy:  0.996
		Classifier test accuracy 0.656038721573
		Step time:  1.2091436386108398
		Epoch time:  868.4551565647125
Epoch 18
		Classifier train accuracy:  0.998
		Classifier test accuracy 0.6163952059
		Step time:  1.2715940475463867
		Epoch time:  877.9368147850037
Epoch 19
		Classifier train accuracy:  0.996
		Classifier test accuracy 0.652350952674
		Step time:  1.2314691543579102
		Epoch time:  869.6398000717163
Epoch 20
		Classifier train accuracy:  0.998
		Classifier test accuracy 0.617086662569
		Step time:  1.2626428604125977
		Epoch time:  873.2350330352783
Epoch 21
		Classifier train accuracy:  0.999
		Classifier test accuracy 0.671097111248
		Step time:  1.2180743217468262
		Epoch time:  867.034857749939
Epoch 22
		Classifier train accuracy:  0.999
		Classifier test accuracy 0.588583282114
		Step time:  1.2547426223754883
		Epoch time:  889.960725069046
Epoch 23
		Classifier train accuracy:  0.999
		Classifier test accuracy 0.678011677935
		Step time:  1.268782615661621
		Epoch time:  886.1121232509613
Epoch 24
		Classifier train accuracy:  0.998
		Classifier test accuracy 0.486401352182
		Step time:  1.2574212551116943
		Epoch time:  891.8972413539886

In [24]:
fig, ax = plt.subplots()
plt.plot(train_accuracies, label='Train', alpha=0.5)
plt.plot(test_accuracies, label='Test', alpha=0.5)
plt.title("Accuracy")
plt.legend()


Out[24]:
<matplotlib.legend.Legend at 0x28705df1b00>

When you run the fully implemented semi-supervised GAN, you should usually find that the test accuracy peaks at 69-71%. It should definitely stay above 68% fairly consistently throughout the last several epochs of training.

This is a little bit better than a NIPS 2014 paper that got 64% accuracy on 1000-label SVHN with variational methods. However, we still have lost something by not using all the labels. If you re-run with all the labels included, you should obtain over 80% accuracy using this architecture (and other architectures that take longer to run can do much better).


In [25]:
_ = view_samples(-1, samples, 5, 10, figsize=(10,5))



In [26]:
!mkdir images

In [27]:
for ii in range(len(samples)):
    fig, ax = view_samples(ii, samples, 5, 10, figsize=(10,5))
    fig.savefig('images/samples_{:03d}.png'.format(ii))
    plt.close()

Congratulations! You now know how to train a semi-supervised GAN. This exercise is stripped down to make it run faster and to make it simpler to implement. In the original work by Tim Salimans at OpenAI, a GAN using more tricks and more runtime reaches over 94% accuracy using only 1,000 labeled examples.


In [ ]: