In [1]:
# Configure Jupyter so figures appear in the notebook
%matplotlib inline
# Configure Jupyter to display the assigned value after an assignment
%config InteractiveShell.ast_node_interactivity='last_expr_or_assign'
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
sns.set_context('talk')
As a way of understanding AUC ROC, let's look at the relationship between AUC and Cohen's effect size.
Cohen's effect size, d
, expresses the difference between two groups as the number of standard deviations between the means.
As d
increases, we expect it to be easier to distinguish between groups, so we expect AUC to increase.
I'll start in one dimension and then generalize to multiple dimensions.a
Here are the means and standard deviations for two hypothetical groups.
In [2]:
mu1 = 0
sigma = 1
d = 1
mu2 = mu1 + d;
I'll generate two random samples with these parameters.
In [3]:
n = 1000
sample1 = np.random.normal(mu1, sigma, n)
sample2 = np.random.normal(mu2, sigma, n);
If we put a threshold at the midpoint between the means, we can compute the fraction of Group 0 that would be above the threshold.
I'll call that the false positive rate.
In [4]:
thresh = (mu1 + mu2) / 2
np.mean(sample1 > thresh)
Out[4]:
And here's the fraction of Group 1 that would be below the threshold, which I'll call the false negative rate.
In [5]:
np.mean(sample2 < thresh)
Out[5]:
In [6]:
from scipy.stats import gaussian_kde
def make_kde(sample):
"""Kernel density estimate.
sample: sequence
returns: Series
"""
xs = np.linspace(-4, 4, 101)
kde = gaussian_kde(sample)
ys = kde.evaluate(xs)
return pd.Series(ys, index=xs)
In [7]:
def plot_kde(kde, clipped, color):
"""Plot a KDE and fill under the clipped part.
kde: Series
clipped: Series
color: string
"""
plt.plot(kde.index, kde, color=color)
plt.fill_between(clipped.index, clipped, color=color, alpha=0.3)
In [8]:
def plot_misclassification(sample1, sample2, thresh):
"""Plot KDEs and shade the areas of misclassification.
sample1: sequence
sample2: sequence
thresh: number
"""
kde1 = make_kde(sample1)
clipped = kde1[kde1.index>=thresh]
plot_kde(kde1, clipped, 'C0')
kde2 = make_kde(sample2)
clipped = kde2[kde2.index<=thresh]
plot_kde(kde2, clipped, 'C1')
Here's what it looks like with the threshold at 0. There are many false positives, shown in blue, and few false negatives, in orange.
In [9]:
plot_misclassification(sample1, sample2, 0)
With a higher threshold, we get fewer false positives, at the cost of more false negatives.
In [10]:
plot_misclassification(sample1, sample2, 1)
In [11]:
def fpr_tpr(sample1, sample2, thresh):
"""Compute false positive and true positive rates.
sample1: sequence
sample2: sequence
thresh: number
returns: tuple of (fpr, tpf)
"""
fpr = np.mean(sample1>thresh)
tpr = np.mean(sample2>thresh)
return fpr, tpr
When the threshold is high, the false positive rate is low, but so is the true positive rate.
In [12]:
fpr_tpr(sample1, sample2, 1)
Out[12]:
As we decrease the threshold, the true positive rate increases, but so does the false positive rate.
In [13]:
fpr_tpr(sample1, sample2, 0)
Out[13]:
The ROC shows this tradeoff over a range of thresholds.
I sweep thresholds from high to low so the ROC goes from left to right.
In [14]:
from scipy.integrate import trapz
def plot_roc(sample1, sample2, label):
"""Plot the ROC curve and return the AUC.
sample1: sequence
sample2: sequence
label: string
returns: AUC
"""
threshes = np.linspace(5, -3)
roc = [fpr_tpr(sample1, sample2, thresh)
for thresh in threshes]
fpr, tpr = np.transpose(roc)
plt.plot(fpr, tpr, label=label)
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
auc = trapz(tpr, fpr)
return auc
Here's the ROC for the samples.
With d=1
, the area under the curve is about 0.75. That might be a good number to remember.
In [15]:
auc = plot_roc(sample1, sample2, '')
Out[15]:
Now let's see what that looks like for a range of d
.
In [16]:
mu1 = 0
sigma = 1
n = 1000
res = []
for mu2 in [3, 2, 1.5, 0.75, 0.25]:
sample1 = np.random.normal(mu1, sigma, n)
sample2 = np.random.normal(mu2, sigma, n)
d = (mu2-mu1) / sigma
label = 'd = %0.2g' % d
auc = plot_roc(sample1, sample2, label)
res.append((d, auc))
plt.legend();
This function computes AUC as a function of d
.
In [17]:
def plot_auc_vs_d(res, label):
d, auc = np.transpose(res)
plt.plot(d, auc, label=label, alpha=0.8)
plt.xlabel('Cohen effect size')
plt.ylabel('Area under ROC')
The following figure shows AUC as a function of d
.
In [18]:
plot_auc_vs_d(res, '')
Not suprisingly, AUC increases as d
increases.
In [19]:
from scipy.stats import multivariate_normal
d = 1
mu1 = [0, 0]
mu2 = [d, d]
rho = 0
sigma = [[1, rho], [rho, 1]]
Out[19]:
In [20]:
sample1 = multivariate_normal(mu1, sigma).rvs(n)
sample2 = multivariate_normal(mu2, sigma).rvs(n);
The mean of sample1
should be near 0 for both features.
In [21]:
np.mean(sample1, axis=0)
Out[21]:
And the mean of sample2
should be near 1.
In [22]:
np.mean(sample2, axis=0)
Out[22]:
The following scatterplot shows what this looks like in 2-D.
In [23]:
x, y = sample1.transpose()
plt.plot(x, y, '.', alpha=0.3)
x, y = sample2.transpose()
plt.plot(x, y, '.', alpha=0.3)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Scatter plot for samples with d=1 in both dimensions');
Some points are clearly classifiable, but there is substantial overlap in the distributions.
We can see the same thing if we estimate a 2-D density function and make a contour plot.
In [24]:
# Based on an example at https://plot.ly/ipython-notebooks/2d-kernel-density-distributions/
def kde_scipy(sample):
"""Use KDE to compute an array of densities.
sample: sequence
returns: tuple of matrixes, (X, Y, Z)
"""
x = np.linspace(-4, 4)
y = x
X, Y = np.meshgrid(x, y)
positions = np.vstack([Y.ravel(), X.ravel()])
kde = gaussian_kde(sample.T)
kde(positions)
Z = np.reshape(kde(positions).T, X.shape)
return [X, Y, Z]
In [25]:
X, Y, Z = kde_scipy(sample1)
plt.contour(X, Y, Z, cmap=plt.cm.Blues, alpha=0.7)
X, Y, Z = kde_scipy(sample2)
plt.contour(X, Y, Z, cmap=plt.cm.Oranges, alpha=0.7)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('KDE for samples with d=1 in both dimensions');
In [26]:
df1 = pd.DataFrame(sample1)
df1['label'] = 1
df1.describe()
Out[26]:
In [27]:
df1[[0,1]].corr()
Out[27]:
In [28]:
df2 = pd.DataFrame(sample2)
df2['label'] = 2
df2.describe()
Out[28]:
In [29]:
df2[[0,1]].corr()
Out[29]:
In [30]:
df = pd.concat([df1, df2], ignore_index=True)
df.label.value_counts()
Out[30]:
X
is the array of features; y
is the vector of labels.
In [31]:
X = df[[0, 1]]
y = df.label;
Now we can fit the model.
In [32]:
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(solver='lbfgs').fit(X, y);
And compute the AUC.
In [33]:
from sklearn.metrics import roc_auc_score
y_pred_prob = model.predict_proba(X)[:,1]
auc = roc_auc_score(y, y_pred_prob)
Out[33]:
With two features, we can do better than with just one.
In [34]:
def multivariate_normal_auc(d, rho=0):
"""Generate multivariate normal samples and classify them.
d: Cohen's effect size along each dimension
num_dims: number of dimensions
returns: AUC
"""
mu1 = [0, 0]
mu2 = [d, d]
sigma = [[1, rho], [rho, 1]]
# generate the samples
sample1 = multivariate_normal(mu1, sigma).rvs(n)
sample2 = multivariate_normal(mu2, sigma).rvs(n)
# label the samples and extract the features and labels
df1 = pd.DataFrame(sample1)
df1['label'] = 1
df2 = pd.DataFrame(sample2)
df2['label'] = 2
df = pd.concat([df1, df2], ignore_index=True)
X = df.drop(columns='label')
y = df.label
# run the model
model = LogisticRegression(solver='lbfgs').fit(X, y)
y_pred_prob = model.predict_proba(X)[:,1]
# compute AUC
auc = roc_auc_score(y, y_pred_prob)
return auc
Now we can sweep a range of values for rho
.
In [35]:
res = [(rho, multivariate_normal_auc(d=1, rho=rho))
for rho in np.linspace(-0.9, 0.9)]
rhos, aucs = np.transpose(res)
plt.plot(rhos, aucs)
plt.xlabel('Correlation (rho)')
plt.ylabel('Area under ROC')
plt.title('AUC as a function of correlation');
In [36]:
def multivariate_normal_auc(d, num_dims=2):
"""Generate multivariate normal samples and classify them.
d: Cohen's effect size along each dimension
num_dims: number of dimensions
returns: AUC
"""
# compute the mus
mu1 = np.zeros(num_dims)
mu2 = np.full(num_dims, d)
# and sigma
sigma = np.identity(num_dims)
# generate the samples
sample1 = multivariate_normal(mu1, sigma).rvs(n)
sample2 = multivariate_normal(mu2, sigma).rvs(n)
# label the samples and extract the features and labels
df1 = pd.DataFrame(sample1)
df1['label'] = 1
df2 = pd.DataFrame(sample2)
df2['label'] = 2
df = pd.concat([df1, df2], ignore_index=True)
X = df.drop(columns='label')
y = df.label
# run the model
model = LogisticRegression(solver='lbfgs').fit(X, y)
y_pred_prob = model.predict_proba(X)[:,1]
# compute AUC
auc = roc_auc_score(y, y_pred_prob)
return auc
Confirming what we have seen before:
In [37]:
multivariate_normal_auc(d=1, num_dims=1)
Out[37]:
In [38]:
multivariate_normal_auc(d=1, num_dims=2)
Out[38]:
Now we can sweep a range of effect sizes.
In [39]:
def compute_auc_vs_d(num_dims):
"""Sweep a range of effect sizes and compute AUC.
num_dims: number of dimensions
returns: list of
"""
effect_sizes = np.linspace(0, 4)
return [(d, multivariate_normal_auc(d, num_dims))
for d in effect_sizes]
In [40]:
res1 = compute_auc_vs_d(1)
res2 = compute_auc_vs_d(2)
res3 = compute_auc_vs_d(3)
res4 = compute_auc_vs_d(4);
And plot the results.
In [41]:
plot_auc_vs_d(res4, 'num_dim=4')
plot_auc_vs_d(res3, 'num_dim=3')
plot_auc_vs_d(res2, 'num_dim=2')
plot_auc_vs_d(res1, 'num_dim=1')
plt.title('AUC vs d for different numbers of features')
plt.legend();
With more features, the AUC gets better, assuming the features are independent.
In [ ]:
In [ ]: