In [1]:
# Configure Jupyter so figures appear in the notebook
%matplotlib inline
# Configure Jupyter to display the assigned value after an assignment
%config InteractiveShell.ast_node_interactivity='last_expr_or_assign'
import numpy as np
# import classes from thinkbayes2
from thinkbayes2 import Pmf, Cdf, Suite, Joint
import thinkplot
In [2]:
slope = 2
inter = 1
sigma = 0.3
In [3]:
xs = np.linspace(0, 1, 6)
In [4]:
ys = inter + slope * xs + np.random.normal(0, sigma, len(xs))
In [5]:
thinkplot.plot(xs, ys)
thinkplot.decorate(xlabel='x',
ylabel='y')
We can solve the problem first using a grid algorithm, with uniform priors for slope, intercept, and sigma.
As an exercise, fill in this likelihood function, then test it using the code below.
Your results will depend on the random data you generated, but in general you should find that the posterior marginal distributions peak near the actual parameters.
In [6]:
from scipy.stats import norm
class Regress(Suite, Joint):
def Likelihood(self, data, hypo):
"""
data: x, y
hypo: slope, inter, sigma
"""
return 1
In [7]:
# Solution goes here
In [8]:
params = np.linspace(-4, 4, 21)
In [9]:
sigmas = np.linspace(0.1, 2, 20)
In [10]:
from itertools import product
hypos = product(params, params, sigmas)
In [11]:
suite = Regress(hypos);
In [12]:
for data in zip(xs, ys):
suite.Update(data)
In [13]:
thinkplot.Pdf(suite.Marginal(0))
thinkplot.decorate(xlabel='Slope',
ylabel='PMF',
title='Posterior marginal distribution')
In [14]:
thinkplot.Pdf(suite.Marginal(1))
thinkplot.decorate(xlabel='Intercept',
ylabel='PMF',
title='Posterior marginal distribution')
In [15]:
thinkplot.Pdf(suite.Marginal(2))
thinkplot.decorate(xlabel='Sigma',
ylabel='PMF',
title='Posterior marginal distribution')
Implement this model using MCMC. As a starting place, you can use this example from Computational Statistics in Python.
You also have the option of using the GLM module, described here.
In [17]:
import pymc3 as pm
pm.GLM
In [18]:
thinkplot.plot(xs, ys)
thinkplot.decorate(xlabel='x',
ylabel='y')
In [19]:
import pymc3 as pm
with pm.Model() as model:
"""Fill this in"""
In [20]:
# Solution goes here
In [21]:
# Solution goes here
In [22]:
# Solution goes here
In [23]:
# Solution goes here
The posterior distributions for these parameters should be similar to what we got with the grid algorithm.
In [ ]: