# Modeling distributions



In :

from __future__ import print_function, division

import analytic
import brfss
import nsfg

import thinkstats2
import thinkplot

import pandas as pd
import numpy as np
import math

%matplotlib inline



This notebook is about ways to model data using analytic distributions. I start with the exponential distribution, which is often a good model of time between random arrivals.

On December 18, 1997, 44 babies were born in a hospital in Brisbane, Australia. The time of birth for all 44 babies was reported in the local paper; the complete dataset is in a file called babyboom.dat.

If the times of birth are random, we expect the times between births to fit an exponential model.

Here's what the exponential CDF looks like for a range of parameters.



In :

thinkplot.PrePlot(3)
for lam in [2.0, 1, 0.5]:
xs, ps = thinkstats2.RenderExpoCdf(lam, 0, 3.0, 50)
label = r'$\lambda=%g$' % lam
thinkplot.Plot(xs, ps, label=label)

thinkplot.Config(title='Exponential CDF',
xlabel='x',
ylabel='CDF',
loc='lower right')






Here's the babyboom data:



In :

df




Out:

time
sex
weight_g
minutes

0
5
1
3837
5

1
104
1
3334
64

2
118
2
3554
78

3
155
2
3838
115

4
257
2
3625
177

5
405
1
2208
245

6
407
1
1745
247

7
422
2
2846
262

8
431
2
3166
271

9
708
2
3520
428

10
735
2
3380
455

11
812
2
3294
492

12
814
1
2576
494

13
909
1
3208
549

14
1035
2
3521
635

15
1049
1
3746
649

16
1053
1
3523
653

17
1133
2
2902
693

18
1209
2
2635
729

19
1256
2
3920
776

20
1305
2
3690
785

21
1406
1
3430
846

22
1407
1
3480
847

23
1433
1
3116
873

24
1446
1
3428
886

25
1514
2
3783
914

26
1631
2
3345
991

27
1657
2
3034
1017

28
1742
1
2184
1062

29
1807
2
3300
1087

30
1825
1
2383
1105

31
1854
2
3428
1134

32
1909
2
4162
1149

33
1947
2
3630
1187

34
1949
2
3406
1189

35
1951
2
3402
1191

36
2010
1
3500
1210

37
2037
2
3736
1237

38
2051
2
3370
1251

39
2104
2
2121
1264

40
2123
2
3150
1283

41
2217
1
3866
1337

42
2327
1
3542
1407

43
2355
1
3278
1435



And here's the CDF of interarrival times.



In :

diffs = df.minutes.diff()
cdf = thinkstats2.Cdf(diffs, label='actual')

thinkplot.PrePlot(1)
thinkplot.Cdf(cdf)
thinkplot.Config(xlabel='minutes',
ylabel='CDF',
legend=False)






Visually it looks like an exponential CDF, but there are other analytic distributions that also look like this. A stronger test is to plot the complementary CDF, that is $1-CDF(x)$ on a log-y scale.

If the data are from an exponential distribution, the result should approximate a straight line.



In :

thinkplot.PrePlot(1)
thinkplot.Cdf(cdf, complement=True)
thinkplot.Config(xlabel='minutes',
ylabel='CCDF',
yscale='log',
legend=False)






It is not exactly straight, which indicates that the exponential distribution is not a perfect model for this data. Most likely the underlying assumption—that a birth is equally likely at any time of day—is not exactly true. Nevertheless, it might be reasonable to model this dataset with an exponential distribution.

As George Box said, "All models are wrong, but some are useful".

### The normal distribution

Many quantities in the natural world are well modeled by a normal distribution, also known as a Gaussian.

Here is what the CDF of a normal distriubution looks like for a few different parameter values:



In :

thinkplot.PrePlot(3)

mus = [1.0, 2.0, 3.0]
sigmas = [0.5, 0.4, 0.3]
for mu, sigma in zip(mus, sigmas):
xs, ps = thinkstats2.RenderNormalCdf(mu=mu, sigma=sigma,
low=-1.0, high=4.0)
label = r'$\mu=%g$, $\sigma=%g$' % (mu, sigma)
thinkplot.Plot(xs, ps, label=label)

thinkplot.Config(title='Normal CDF',
xlabel='x',
ylabel='CDF',
loc=2)






We might expect the distribution of birth weights to be approximately normal. I'll load data from the NSFG again:



In :

weights = preg.totalwgt_lb.dropna()



We can estimate the parameters of the normal distribution, mu and sigma, then plot the data on top of the analytic model:



In :

mu, var = thinkstats2.TrimmedMeanVar(weights, p=0.01)
print('Mean, Var', mu, var)

# plot the model
sigma = math.sqrt(var)
print('Sigma', sigma)
xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=12.5)

thinkplot.Plot(xs, ps, label='model', color='orange')

# plot the data
cdf = thinkstats2.Cdf(weights, label='data')

thinkplot.PrePlot(1)
thinkplot.Cdf(cdf)
thinkplot.Config(title='Birth weights',
xlabel='birth weight (lbs)',
ylabel='CDF',
legend=True)




Mean, Var 7.28088310002 1.54521257035
Sigma 1.24306579486



The data fit the model well, but there are some deviations in the lower tail.

To get a better view of the tails, we can use a normal probability plot, which plots the actual data versus sorted values from random normal values.



In :

def NormalProbability(ys, jitter=0.0):
"""Generates data for a normal probability plot.

ys: sequence of values
jitter: float magnitude of jitter added to the ys

returns: numpy arrays xs, ys
"""
n = len(ys)
xs = np.random.normal(0, 1, n)
xs.sort()

if jitter:
ys = Jitter(ys, jitter)
else:
ys = np.array(ys)
ys.sort()

return xs, ys



If the data are normal, the result should be a straight line.



In :

mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01)
std = math.sqrt(var)

xlim = [-4.5, 4.5]
fxs, fys = thinkstats2.FitLine(xlim, mean, std)
thinkplot.Plot(fxs, fys, linewidth=4, color='0.8')

thinkplot.PrePlot(2)
xs, ys = NormalProbability(weights)
thinkplot.Plot(xs, ys, label='all live')

thinkplot.Config(title='Normal probability plot',
xlabel='Standard deviations from mean',
ylabel='Birth weight (lbs)',
legend=True, loc='lower right',
xlim=xlim)






The normal probability plot shows that the lightest babies are lighter than expected, starting about two standard deviations below the mean. Also, the heaviest babies are heavier than the model predicts.

The NSFG data includes premature babies; if we select full-term babies, we might expect the normal model to be a better fit.



In :

full_term = preg[preg.prglngth >= 37]
term_weights = full_term.totalwgt_lb.dropna()




In :

thinkplot.Plot(fxs, fys, linewidth=4, color='0.8')

thinkplot.PrePlot(2)
xs, ys = NormalProbability(weights)
thinkplot.Plot(xs, ys, label='all live')

xs, ys = NormalProbability(term_weights)
thinkplot.Plot(xs, ys, label='full term')

thinkplot.Config(title='Normal probability plot',
xlabel='Standard deviations from mean',
ylabel='Birth weight (lbs)',
legend=True, loc='lower right',
xlim=xlim)






As expected, the normal model is a better fit for full-term babies at the low end of the distribution.

But it turns out that the normal model does not do very well for adult weight. I'll load data from the BRFSS.



In :

weights = df.wtkg2.dropna()
log_weights = np.log10(weights)



This function generates normal probability plots:



In :

def MakeNormalPlot(weights):
"""Generates a normal probability plot of birth weights.

weights: sequence
"""
mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01)
std = math.sqrt(var)

xs = [-5, 5]
xs, ys = thinkstats2.FitLine(xs, mean, std)
thinkplot.Plot(xs, ys, color='0.8', label='model')

xs, ys = thinkstats2.NormalProbability(weights)
thinkplot.Plot(xs, ys, label='weights')



The normal distribution is a poor model for the distribution of adult weights.



In :

MakeNormalPlot(weights)
thinkplot.Config(xlabel='z', ylabel='weights (kg)')






But if we compute the log of adult weights, the normal distribution is much better.



In :

MakeNormalPlot(log_weights)
thinkplot.Config(xlabel='z', ylabel='weights (log10 kg)')






Within 3 standard deviations of the mean, the normal model does quite well, although the heaviest and lightest people diverge from the model.

If $\log x$ has a normal distribution, $x$ has a lognormal distribution.