# Project Euler: Problem 52

https://projecteuler.net/problem=52

It can be seen that the number, \$125874\$, and its double, \$251748\$, contain exactly the same digits, but in a different order.

Find the smallest positive integer, \$x\$, such that \$2x\$, \$3x\$, \$4x\$, \$5x\$, and \$6x\$, contain the same digits.

First, write a function `same_digits(x,y)` that returns `True` if two integers `x` and `y` have the exact same set of digits and multiplicities and `False` if they have different digits.

``````

In :

def same_digits(x, y):
if [x.split()] == [y.split()]:
return True
else:
return False

``````
``````

In :

assert same_digits('132', '321')
assert not same_digits('123', '3')
assert not same_digits('456', '0987654321')

``````
``````

---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-8-4d2369f19b4d> in <module>()
----> 1 assert same_digits('132', '321')
2 assert not same_digits('123', '3')
3 assert not same_digits('456', '0987654321')

AssertionError:

``````

Now use the `same_digits` function to solve this Euler problem. As you work on this problem, be careful to debug and test your code on small integers before trying it on the full search.

``````

In [ ]:

# YOUR CODE HERE
raise NotImplementedError()

``````
``````

In [ ]:

assert True # leave this cell to grade the solution

``````