```
In [1]:
```%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

Over the past few decades, astronomers have discovered thousands of extrasolar planets. The following paper describes the properties of some of these planets.

http://iopscience.iop.org/1402-4896/2008/T130/014001

Your job is to reproduce Figures 2 and 4 from this paper using an up-to-date dataset of extrasolar planets found on this GitHub repo:

https://github.com/OpenExoplanetCatalogue/open_exoplanet_catalogue

A text version of the dataset has already been put into this directory. The top of the file has documentation about each column of data:

```
In [2]:
```!head -n 30 open_exoplanet_catalogue.txt

```
```

Use `np.genfromtxt`

with a delimiter of `','`

to read the data into a NumPy array called `data`

:

```
In [11]:
```data = np.genfromtxt('open_exoplanet_catalogue.txt' , delimiter = ",")

```
In [12]:
```assert data.shape==(1993,24)

Make a histogram of the distribution of planetary masses. This will reproduce Figure 2 in the original paper.

- Customize your plot to follow Tufte's principles of visualizations.
- Customize the box, grid, spines and ticks to match the requirements of this data.
- Pick the number of bins for the histogram appropriately.

```
In [ ]:
```mass = data[:2]

```
In [ ]:
```assert True # leave for grading

Make a scatter plot of the orbital eccentricity (y) versus the semimajor axis. This will reproduce Figure 4 of the original paper. Use a log scale on the x axis.

- Customize your plot to follow Tufte's principles of visualizations.
- Customize the box, grid, spines and ticks to match the requirements of this data.

```
In [ ]:
```# YOUR CODE HERE
raise NotImplementedError()

```
In [ ]:
```assert True # leave for grading