video_filters


Software Grayscale and Sobel filters on HDMI input

This example notebook will demonstrate two image filters using a snapshot from the HDMI input:

  1. First, a frame is read from HDMI input
  2. That image is saved and displayed in the notebook
  3. Some simple Python pixel-level image processing is done (Gray Scale conversion, and Sobel filter)

1. Start the HDMI input

An HDMI input source is required for this example. This should be on, and connected to the board before running the code below.


In [1]:
from pynq.drivers.video import Frame, HDMI
from IPython.display import Image

hdmi=HDMI('in')
hdmi.start()

2. Save frame and display JPG here


In [2]:
frame = hdmi.frame()
orig_img_path = '/home/xilinx/jupyter_notebooks/examples/data/orig.jpg'
frame.save_as_jpeg(orig_img_path)

Image(filename=orig_img_path)


Out[2]:

3. Gray Scale filter

Access the frame contents (a bytearray) directly for optimized processing time. This cell should take ~20s to complete.


In [3]:
from pynq.drivers.video import MAX_FRAME_WIDTH

grayframe = frame
frame_i = grayframe.frame

height = hdmi.frame_height()
width = hdmi.frame_width()

for y in range(0, height):
    for x in range(0, width):
        
        offset = 3 * (y * MAX_FRAME_WIDTH + x)
        
        gray = round((0.299*frame_i[offset+2]) + 
                     (0.587*frame_i[offset+0]) +
                     (0.114*frame_i[offset+1]))
        frame_i[offset+0] = gray     
        frame_i[offset+1] = gray
        frame_i[offset+2] = gray

gray_img_path = '/home/xilinx/jupyter_notebooks/examples/data/gray.jpg'
grayframe.save_as_jpeg(gray_img_path)
Image(filename=gray_img_path)


Out[3]:

4. Sobel filter

Access the frame contents (a bytearray) directly for optimized processing time. This cell should take ~30s to complete.

Compute the Sobel Filter output with sobel operator:

$G_x= \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} $

$G_y= \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} $


In [4]:
height = 1080
width = 1920
sobel = Frame(1920, 1080)
frame_i = frame.frame

for y in range(1,height-1):
    for x in range(1,width-1):
        
        offset = 3 * (y * MAX_FRAME_WIDTH + x)
        upper_row_offset = offset - MAX_FRAME_WIDTH*3
        lower_row_offset = offset + MAX_FRAME_WIDTH*3       
        
        gx = abs(-frame_i[lower_row_offset-3] + frame_i[lower_row_offset+3] -
                 2*frame_i[offset-3] + 2*frame_i[offset+3] -
                 frame_i[upper_row_offset-3] + frame_i[upper_row_offset+3])
        gy = abs(frame_i[lower_row_offset-3] + 2*frame_i[lower_row_offset] + 
                 frame_i[lower_row_offset+3] - frame_i[upper_row_offset-3] -
                 2*frame_i[upper_row_offset] - frame_i[upper_row_offset+3])        
       
        grad = gx + gy
        if grad > 255:
            grad = 255                    
        sobel.frame[offset+0] = grad     
        sobel.frame[offset+1] = grad
        sobel.frame[offset+2] = grad
        
sobel_img_path = '/home/xilinx/jupyter_notebooks/examples/data/sobel.jpg'
sobel.save_as_jpeg(sobel_img_path)

Image(filename=sobel_img_path)


Out[4]:

Step 5: Free up space from different frames


In [5]:
hdmi.stop()

del sobel
del grayframe
del hdmi