In [ ]:
import pandas as pd
from pandas import DataFrame, Series
import numpy as np
In [ ]:
rng = pd.date_range('3/9/2012 9:30', periods=6, freq='D')
In [ ]:
rng
In [ ]:
type(rng)
In [ ]:
rng2 = pd.date_range('3/9/2012 9:30', periods=6, freq='M')
In [ ]:
rng2
In [ ]:
ts = Series(np.random.randn(len(rng)), index=rng)
type(ts)
In [ ]:
ts
In [ ]:
ts.index.tz
In [ ]:
rng.tz
In [ ]:
ts_utc = ts.tz_localize('UTC')
In [ ]:
ts_utc.index.tz
In [ ]:
ts_utc
In [ ]:
ts_pacific = ts_utc.tz_convert('US/Pacific')
ts_pacific
In [ ]:
from IPython.display import YouTubeVideo
YouTubeVideo("k4EUTMPuvHo")
In [ ]:
ts_eastern = ts_pacific.tz_convert('US/Eastern')
ts_eastern
In [ ]:
ts_berlin = ts_pacific.tz_convert('Europe/Berlin')
ts_berlin
In [ ]:
stamp = pd.Timestamp('2011-03-12 04:00')
In [ ]:
stamp2 = pd.Timestamp('Wed May 23 11:35:54 2018') # will this work too?
In [ ]:
type(stamp2)
In [ ]:
stamp2_pac = stamp2.tz_localize('US/Pacific')
stamp2_pac
In [ ]:
stamp2_pac.tz_convert('Europe/Moscow')
In [ ]:
stamp2_pac.value # nanoseconds since the UNIX Epoch, Jan 1 1970
In [ ]:
stamp2_pac.tz_convert('Europe/Moscow').value
In [ ]:
stamp3 = pd.Timestamp('Wed May 23 11:35:54 1950')
In [ ]:
stamp3.value # negative number because before the UNIX Epoch
In [ ]:
ts
In [ ]:
ts_sum = ts_eastern + ts_utc.tz_convert("Europe/Moscow")
In [ ]:
ts_sum.index
In [ ]:
pd.Timestamp.now(tz='US/Pacific') # getting you started