In [1]:
import torch 
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
print(torch.__version__)
# CIFAR-10 Dataset

# Image Processing
transform = transforms.Compose([
    transforms.Scale(40), # pytorch 3.0에선 Resize라는 것이 추가
    transforms.RandomHorizontalFlip(), 
    # 주어진 PIL Image를 임의로 0.5 확률로 가로로 뒤집음
    transforms.RandomCrop(32),
    transforms.ToTensor()])

train_dataset = dsets.CIFAR10(root='./data/',
                               train=True, 
                               transform=transform,
                               download=True)

test_dataset = dsets.CIFAR10(root='./data/',
                              train=False, 
                              transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=100, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=100, 
                                          shuffle=False)


0.3.0.post4
Files already downloaded and verified

In [2]:
def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3,
                    stride=stride, padding=1, bias=False)

In [6]:
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample
    
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

In [20]:
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[0], 2)
        self.layer3 = self.make_layer(block, 64, layers[1], 2)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(64, num_classes)
        
    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)
    
    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out

In [21]:
resnet = ResNet(ResidualBlock, [2, 2, 2, 2])

In [ ]:
%%time
criterion = nn.CrossEntropyLoss()
lr = 0.001
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)

# Training 
for epoch in range(80):
    for i, (images, labels) in enumerate(train_loader):
        images = Variable(images)
        labels = Variable(labels)
        
        # Forward + Backward + Optimize
        optimizer.zero_grad()
        outputs = resnet(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 80, i+1, 500, loss.data[0]))

    # Decaying Learning Rate
    if (epoch+1) % 20 == 0:
        lr /= 3
        optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)


Epoch [1/80], Iter [100/500] Loss: 1.7132
Epoch [1/80], Iter [200/500] Loss: 1.5526
Epoch [1/80], Iter [300/500] Loss: 1.2855
Epoch [1/80], Iter [400/500] Loss: 1.3127
Epoch [1/80], Iter [500/500] Loss: 1.2235
Epoch [2/80], Iter [100/500] Loss: 1.0580
Epoch [2/80], Iter [200/500] Loss: 1.2012
Epoch [2/80], Iter [300/500] Loss: 1.1229
Epoch [2/80], Iter [400/500] Loss: 1.0753
Epoch [2/80], Iter [500/500] Loss: 1.1590
Epoch [3/80], Iter [100/500] Loss: 0.9523
Epoch [3/80], Iter [200/500] Loss: 0.9393
Epoch [3/80], Iter [300/500] Loss: 0.7965
Epoch [3/80], Iter [400/500] Loss: 0.8188
Epoch [3/80], Iter [500/500] Loss: 0.7678
Epoch [4/80], Iter [100/500] Loss: 0.9263
Epoch [4/80], Iter [200/500] Loss: 0.8437
Epoch [4/80], Iter [300/500] Loss: 0.7868
Epoch [4/80], Iter [400/500] Loss: 0.6540
Epoch [4/80], Iter [500/500] Loss: 0.7453
Epoch [5/80], Iter [100/500] Loss: 0.8619
Epoch [5/80], Iter [200/500] Loss: 0.7641
Epoch [5/80], Iter [300/500] Loss: 0.9333
Epoch [5/80], Iter [400/500] Loss: 0.7485
Epoch [5/80], Iter [500/500] Loss: 0.7401

In [ ]:
correct = 0
total = 0
for images, labels in test_loader:
    images = Variable(images)
    outputs = resnet(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum()

print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))