In [1]:
import pandas as pd
In [ ]:
df['created_at'] = pd.to_datetime(df['created_at'])
df['created_at'] = df['created_at'].dt.tz_localize('UTC').dt.tz_convert('Asia/Seoul')
df['cancelled_wait_time'] = df['cancelled_at'] - df['created_at']
df['year'] = df['created_at'].dt.year
df['month'] = df['created_at'].dt.month
df['day'] = df['created_at'].dt.day
df['date'] = df['created_at'].dt.date
df['time'] = df['created_at'].dt.time
df['quarter'] = df['created_at'].dt.quarter
df['weekday'] = df['created_at'].dt.weekday
df['hour'] = df['created_at'].dt.hour
df['created_at'] = pd.to_datetime(df['created_at']) + pd.DateOffset(hours=9)
df['created_at_30min'] = df['created_at'].dt.floor("30min")
df['created_at_hour'] = df['created_at'].dt.round("H")
In [2]:
pd.date_range(start='2018-01-01', end='2019-01-01', freq='1H')
Out[2]:
In [3]:
pd.date_range(start='2018-01-01', end='2019-01-01', freq='1D')
Out[3]:
In [4]:
pd.date_range(start='2018-01-01', end='2019-01-01', freq='1D')[:-1]
Out[4]:
In [ ]: