In [27]:
%matplotlib notebook
from matplotlib import pyplot as plt

In [22]:
from datetime import datetime

In [13]:
from pymongo import MongoClient
client = MongoClient("mongodb://zui:F0reverqwerty@localhost:27017/")
db = client['hkns3']

In [14]:
col = db['items']

In [17]:
import pandas

In [24]:
df = pandas.DataFrame(list(db['raw'].find({"type":"max_id"})))

In [37]:
df['time'].astype(int)


Out[37]:
0       1494944438
1       1494944588
2       1494944740
3       1494944890
4       1494945043
5       1494945193
6       1494945490
7       1494945642
8       1494945793
9       1494945944
10      1494946095
11      1494946247
12      1494946397
13      1494946549
14      1494946699
15      1494946851
16      1494947002
17      1494947152
18      1494947304
19      1494947454
20      1494947606
21      1494947756
22      1494947909
23      1494948059
24      1494948209
25      1494948361
26      1494948511
27      1494948663
28      1494948814
29      1494948965
           ...    
3007    1495398797
3008    1495398947
3009    1495399099
3010    1495399249
3011    1495399401
3012    1495399552
3013    1495399703
3014    1495399854
3015    1495400006
3016    1495400156
3017    1495400306
3018    1495400458
3019    1495400609
3020    1495400761
3021    1495400911
3022    1495401063
3023    1495401213
3024    1495401366
3025    1495401516
3026    1495401668
3027    1495401818
3028    1495401969
3029    1495402119
3030    1495402270
3031    1495402423
3032    1495402573
3033    1495402724
3034    1495402875
3035    1495403027
3036    1495403178
Name: time, dtype: int32

In [25]:
df


Out[25]:
_id id time type
0 591b0ab6421e8130778051d9 14349758 1.494944e+09 max_id
1 591b0b4c421e813077805240 14349776 1.494945e+09 max_id
2 591b0be4421e813077805253 14349795 1.494945e+09 max_id
3 591b0c7a421e813077805268 14349815 1.494945e+09 max_id
4 591b0d13421e81307780527d 14349837 1.494945e+09 max_id
5 591b0da9421e813077805295 14349850 1.494945e+09 max_id
6 591b0ed2421e8132180221b9 14349895 1.494945e+09 max_id
7 591b0f6a421e8132180221e7 14349916 1.494946e+09 max_id
8 591b1001421e8132180221ff 14349944 1.494946e+09 max_id
9 591b1098421e81321802221c 14349967 1.494946e+09 max_id
10 591b112f421e813218022236 14349994 1.494946e+09 max_id
11 591b11c7421e813218022252 14350006 1.494946e+09 max_id
12 591b125d421e813218022261 14350033 1.494946e+09 max_id
13 591b12f5421e81321802227d 14350059 1.494947e+09 max_id
14 591b138b421e81321802229a 14350071 1.494947e+09 max_id
15 591b1423421e8132180222a7 14350099 1.494947e+09 max_id
16 591b14ba421e8132180222c6 14350119 1.494947e+09 max_id
17 591b1550421e8132180222db 14350142 1.494947e+09 max_id
18 591b15e8421e8132180222f5 14350164 1.494947e+09 max_id
19 591b167e421e81321802230c 14350184 1.494947e+09 max_id
20 591b1716421e813218022323 14350197 1.494948e+09 max_id
21 591b17ac421e813218022331 14350217 1.494948e+09 max_id
22 591b1845421e813218022348 14350235 1.494948e+09 max_id
23 591b18db421e81321802235b 14350256 1.494948e+09 max_id
24 591b1971421e813218022373 14350268 1.494948e+09 max_id
25 591b1a09421e813218022380 14350292 1.494948e+09 max_id
26 591b1a9f421e81321802239b 14350306 1.494949e+09 max_id
27 591b1b37421e8132180223aa 14350321 1.494949e+09 max_id
28 591b1bce421e8132180223bc 14350354 1.494949e+09 max_id
29 591b1c65421e8132180223de 14350372 1.494949e+09 max_id
... ... ... ... ...
3007 5921f98d421e81321802d282 14389116 1.495399e+09 max_id
3008 5921fa23421e81321802d293 14389129 1.495399e+09 max_id
3009 5921fabb421e81321802d2a1 14389138 1.495399e+09 max_id
3010 5921fb51421e81321802d2ad 14389149 1.495399e+09 max_id
3011 5921fbe9421e81321802d2b9 14389154 1.495399e+09 max_id
3012 5921fc80421e81321802d2c1 14389160 1.495400e+09 max_id
3013 5921fd17421e81321802d2c8 14389174 1.495400e+09 max_id
3014 5921fdae421e81321802d2d9 14389188 1.495400e+09 max_id
3015 5921fe46421e81321802d2e8 14389199 1.495400e+09 max_id
3016 5921fedc421e81321802d2f6 14389209 1.495400e+09 max_id
3017 5921ff72421e81321802d301 14389220 1.495400e+09 max_id
3018 5922000a421e81321802d30f 14389233 1.495400e+09 max_id
3019 592200a1421e81321802d31d 14389244 1.495401e+09 max_id
3020 59220139421e81321802d32b 14389256 1.495401e+09 max_id
3021 592201cf421e81321802d338 14389264 1.495401e+09 max_id
3022 59220267421e81321802d343 14389277 1.495401e+09 max_id
3023 592202fd421e81321802d351 14389290 1.495401e+09 max_id
3024 59220396421e81321802d361 14389299 1.495401e+09 max_id
3025 5922042c421e81321802d36b 14389309 1.495402e+09 max_id
3026 592204c4421e81321802d378 14389316 1.495402e+09 max_id
3027 5922055a421e81321802d380 14389323 1.495402e+09 max_id
3028 592205f1421e81321802d38a 14389334 1.495402e+09 max_id
3029 59220687421e81321802d396 14389344 1.495402e+09 max_id
3030 5922071e421e81321802d3a3 14389356 1.495402e+09 max_id
3031 592207b7421e81321802d3b0 14389366 1.495402e+09 max_id
3032 5922084d421e81321802d3bd 14389376 1.495403e+09 max_id
3033 592208e4421e81321802d3c8 14389390 1.495403e+09 max_id
3034 5922097b421e81321802d3d9 14389396 1.495403e+09 max_id
3035 59220a13421e81321802d3e0 14389409 1.495403e+09 max_id
3036 59220aaa421e81321802d3f0 14389414 1.495403e+09 max_id

3037 rows × 4 columns


In [23]:
datetime.fromtimestamp(db['raw'].find_one({"type":"max_id"})['time'])


Out[23]:
datetime.datetime(2017, 5, 16, 10, 20, 38, 307522)

In [28]:
df.plot(x="time", y="id")


Out[28]:
<matplotlib.axes._subplots.AxesSubplot at 0x1215c341710>

In [ ]: