In [1]:
using JLD
using Multilane
using POMDPs
using MCTS
using DataFrames
using DataFramesMeta



In [2]:
results = load("../data/random_periods.jld")
@where(results["stats"], :time_to_lane .== 138.0)


Out[2]:
iduuidsolver_keyproblem_keyinitial_keyrng_seedtimerewardbrake_threshlambdanb_brakessteps_to_lanetime_to_lanesteps_in_lanestepscrashvel_sigma
13075896167318929652242737391457942643866randomeUvEUsEgwbNTilaR301.470100137713681e9-1490.02.510.015184138.01184false0.0
258166519622417990557558031317867226002442randomeUvEUsEgZDx1juRZ581.470100137713681e9-1390.02.510.014184138.01184false0.0
380226898399823970017215985797242408123763randomeUvEUsEgZf7ocg5z801.470100137713681e9-1790.02.510.018184138.01184false0.0
4105221140434010781105279085408653248446710randomeUvEUsEgjkirtfFl1051.470100137713681e9-90.02.510.01184138.01184false0.0
5109184962696308132062911375789615519550408randomeUvEUsEgvz4l0LxC1091.470100137713681e9-190.02.510.02184138.01184false0.0
6166196702660038312521371069159508607690139randomeUvEUsEgFoeuf7MQ1661.470100137713681e9-390.02.510.04184138.01184false0.0
7167200707299143638027520374486980016957639randomeUvEUsEgh2YMs3Zg1671.470100137713681e9-790.02.510.08184138.01184false0.0
819519834215454004599175571913048724810998randomeUvEUsEgAiKD9RA01951.470100137713681e9-90.02.510.01184138.01184false0.0
9203219109791300834461530588226739209201613randomeUvEUsEgTIHfwu3z2031.470100137713681e9-590.02.510.06184138.01184false0.0
10223146600244616735854469414735306745156858randomeUvEUsEgQ4OlmUUy2231.470100137713681e9-1990.02.510.020184138.01184false0.0
11243259911956885574078904121599742819235436randomeUvEUsEgguremcQu2431.470100137713681e9-1490.02.510.015184138.01184false0.0
12257204652816303029622031225840607874397188randomeUvEUsEgMsXcHbRP2571.470100137713681e9-1290.02.510.013184138.01184false0.0
1329149590317384996312402729308789072391277randomeUvEUsEgZGgxCJkP2911.470100137713681e9-390.02.510.04184138.01184false0.0
14293311837240295319777702142826047395653046randomeUvEUsEgDN9qH0fu2931.470100137713681e9-490.02.510.05184138.01184false0.0
1530431102540549188722569928487767901242627randomeUvEUsEgsT8gwHGC3041.470100137713681e9-1290.02.510.013184138.01184false0.0
1630918724730257160532717129294644046106971randomeUvEUsEg54cVFbPQ3091.470100137713681e9-1490.02.510.015184138.01184false0.0
1732564820873913141917566408742641915049832randomeUvEUsEgkB5BfENQ3251.470100137713681e9-890.02.510.09184138.01184false0.0
18333155921938868670082900478602297959676655randomeUvEUsEgiE4YyOvj3331.470100137713681e9-1790.02.510.018184138.01184false0.0
19348193455387872999526692590541734689735346randomeUvEUsEgYbRQeWAW3481.470100137713681e9-2090.02.510.021184138.01184false0.0
2035254973968898950910438886458034563429571randomeUvEUsEgzSFP6cCy3521.470100137713681e9-690.02.510.07184138.01184false0.0
21354252356913755279029943861645253394992050randomeUvEUsEg9OpCKhIP3541.470100137713681e9-990.02.510.010184138.01184false0.0
22380109011789033323902008186278183480631974randomeUvEUsEgiauMJExQ3801.470100137713681e9-2790.02.510.028184138.01184false0.0
2348622727790771040458881613782609609860204randomeUvEUsEgB1z3fryM4861.470100137713681e9-590.02.510.06184138.01184false0.0
24555169211719605242045297656180887155550806randomeUvEUsEgSCUIO7wu5551.470100137713681e9-890.02.510.09184138.01184false0.0
2555825610236258164498284162623050024684893randomeUvEUsEgTRxcSkvz5581.470100137713681e9-3490.02.510.035184138.01184false0.0
2669289740741269351887678407907182143873475randomeUvEUsEg6NDtHZvb6921.470100137713681e9-990.02.510.010184138.01184false0.0
27745122356361924670980154095779074166607731randomeUvEUsEgkwE2aiIr7451.470100137713681e9-1590.02.510.016184138.01184false0.0
28749304474495169911519109760835765424357134randomeUvEUsEgz4zAU9dP7491.470100137713681e9-1090.02.510.011184138.01184false0.0
29804178510860268715803506266414291278643445randomeUvEUsEgnnor3zdg8041.470100137713681e9-1290.02.510.013184138.01184false0.0
30926146681323288386588170028853292035582301randomeUvEUsEgMxCl0Ch59261.470100137713681e9-890.02.510.09184138.01184false0.0
&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip&vellip

In [3]:
problem, sim, policy = rerun(results, 30);

In [4]:
display_sim(problem, sim)
# filename = write_tmp_gif(problem, sim)
# run(`gifview $filename`)


WARNING: This should be run in a Jupyter Notebook
Out[4]:

In [5]:
step = 1


WARNING: imported binding for step overwritten in module Main
Out[5]:
1

In [6]:
visualize(problem, sim.state_hist[step], sim.action_hist[step], sim.state_hist[step+1]);



In [ ]: