In [1]:
library(caret)
In [2]:
library(data.table)
In [31]:
path = '/home/zongyi/bimbo_data/'
train <- fread('/home/zongyi/bimbo_data/test_fs.csv', select=c('prior_sum','lag_sum'))
In [24]:
train[is.na(train)] <- 0
In [26]:
train <- train[1:1000]
In [37]:
c2 <- chisq.test(train$lag_sum, train$lag1)
print(c2)
In [ ]:
In [32]:
fcor <- cor(train)
fcor
In [24]:
sum(abs(fcor[upper.tri(fcor)]))
In [29]:
highCorr <- sum(abs(fcor[upper.tri(fcor)]) > .995)
highCorr
In [33]:
summary(fcor[upper.tri(fcor)])
In [ ]: