{'accuracy': 0.469, 'auc': 0.7152721666666683, 'confusion_matrix': Columns:
target_label str
predicted_label str
count int
Rows: 16
Data:
+--------------+-----------------+-------+
| target_label | predicted_label | count |
+--------------+-----------------+-------+
| bird | cat | 116 |
| dog | automobile | 118 |
| dog | dog | 464 |
| cat | dog | 346 |
| cat | cat | 253 |
| automobile | automobile | 663 |
| bird | automobile | 158 |
| cat | automobile | 185 |
| dog | bird | 230 |
| automobile | bird | 87 |
+--------------+-----------------+-------+
[16 rows x 3 columns]
Note: Only the head of the SFrame is printed.
You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns., 'f1_score': 0.4606416683537964, 'log_loss': 1.230523503428094, 'precision': 0.46059547850243937, 'recall': 0.46900000000000003, 'roc_curve': Columns:
threshold float
fpr float
tpr float
p int
n int
class int
Rows: 400004
Data:
+-----------+-----+-----+------+------+-------+
| threshold | fpr | tpr | p | n | class |
+-----------+-----+-----+------+------+-------+
| 0.0 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 1e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 2e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 3e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 4e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 5e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 6e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 7e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 8e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
| 9e-05 | 1.0 | 1.0 | 1000 | 3000 | 0 |
+-----------+-----+-----+------+------+-------+
[400004 rows x 6 columns]
Note: Only the head of the SFrame is printed.
You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.}