In [2]:
import tensorflow as tf
a = tf.placeholder("float")
b = tf.placeholder("float")
y = tf.multiply(a, b)
sess = tf.Session()
print sess.run(y, feed_dict={a: 3, b: 3})
In [4]:
import numpy as np
num_puntos = 2000
conjunto_puntos = []
for i in xrange(num_puntos):
if np.random.random() > 0.5:
conjunto_puntos.append([np.random.normal(0.0, 0.9), np.random.normal(0.0, 0.9)])
else:
conjunto_puntos.append([np.random.normal(3.0, 0.5), np.random.normal(1.0, 0.5)])
In [5]:
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.DataFrame({"x": [v[0] for v in conjunto_puntos],
"y": [v[1] for v in conjunto_puntos]})
sns.lmplot("x", "y", data=df, fit_reg=False, size=6)
plt.show()
In [26]:
import numpy as np
vectors = tf.constant(conjunto_puntos)
k = 4
centroides = tf.Variable(tf.slice(tf.random_shuffle(vectors),[0,0],[k,-1]))
expanded_vectors = tf.expand_dims(vectors, 0)
expanded_centroides = tf.expand_dims(centroides, 1)
assignments = tf.argmin(tf.reduce_sum(tf.square(tf.subtract(expanded_vectors, expanded_centroides)), 2), 0)
means = tf.concat([tf.reduce_mean(tf.gather(vectors, tf.reshape(tf.where( tf.equal(assignments, c)),[1,-1])), reduction_indices=[1]) for c in xrange(k)], 0)
update_centroides = tf.assign(centroides, means)
init_op = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init_op)
for step in xrange(100):
_, centroid_values, assignment_values = sess.run([update_centroides, centroides, assignments])
data = {"x": [], "y": [], "cluster": []}
for i in xrange(len(assignment_values)):
data["x"].append(conjunto_puntos[i][0])
data["y"].append(conjunto_puntos[i][1])
data["cluster"].append(assignment_values[i])
df = pd.DataFrame(data)
sns.lmplot("x", "y", data=df, fit_reg=False, size=6, hue="cluster", legend=False)
plt.show()
In [37]:
vectors = tf.constant(conjunto_puntos)
k = 4
centroides = tf.Variable(tf.slice(tf.random_shuffle(vectors), [0,0], [k, -1]))
print vectors.get_shape()
print centroides.get_shape()
expanded_vectors = tf.expand_dims(vectors, 0)
expanded_centroides = tf.expand_dims(centroides, 1)
print expanded_vectors.get_shape()
print expanded_centroides.get_shape()
In [39]:
diff = tf.subtract(expanded_vectors, expanded_centroides)
sqr = tf.square(diff)
distances = tf.reduce_sum(sqr, 2)
assignments = tf.argmin(distances, 0)
print diff
print sqr
print distances
print assignments
In [41]:
assigments = tf.argmin(tf.reduce_sum(tf.square(tf.subtract(expanded_vectors, expanded_centroides)), 2), 0)
print assignments
In [43]:
means = tf.concat([tf.reduce_mean(tf.gather(vectors, tf.reshape(tf.where(tf.equal(assignments, c)), [1, -1])), reduction_indices=[1]) for c in xrange(k)], 0)
In [44]:
update_centroides = tf.assign(centroides, means)
In [45]:
init_op = tf.global_variables_initializer()
In [52]:
sess = tf.Session()
sess.run(init_op)
num_steps = 8
for step in xrange(num_steps):
_, centroid_values, assignment_values = sess.run([update_centroides, centroides, assignments])
print centroid_values
In [54]:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
In [55]:
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
In [56]:
x = tf.placeholder("float", [None, 784])
y = tf.nn.softmax(tf.matmul(x, W) + b)
In [57]:
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
In [58]:
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
In [59]:
sess = tf.Session()
sess.run(tf.global_variables_initializer())
In [61]:
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100);
sess.run(train_step, feed_dict = {x: batch_xs, y_: batch_ys})
In [62]:
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
In [63]:
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
In [64]:
print sess.run(accuracy, feed_dict = {x: mnist.test.images, y_: mnist.test.labels})
In [ ]: