In [2]:
import tensorflow as tf
from tensorflow.python.framework import ops
sess = tf.Session()
In [6]:
a = tf.Variable(tf.constant(4.))
x_val = 5.
x_data = tf.placeholder(dtype=tf.float32)
In [10]:
multiplication = tf.multiply(a, x_data)
In [11]:
loss = tf.square(tf.subtract(multiplication, 50.))
In [13]:
init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)
In [15]:
print('Optimizing a Mutiplicaiton Gate Output to 50.')
for i in range(10):
sess.run(train_step, feed_dict={x_data: x_val})
a_val = sess.run(a)
mult_output = sess.run(multiplication, feed_dict={x_data: x_val})
print(str(a_val) + ' * ' + str(x_val) + " = " + str(mult_output))
In [16]:
from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
In [18]:
a = tf.Variable(tf.constant(1.))
b = tf.Variable(tf.constant(1.))
x_val = 5.
x_data = tf.placeholder(dtype=tf.float32)
two_gate = tf.add(tf.multiply(a, x_data), b)
loss = tf.square(tf.subtract(two_gate, 50.))
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)
init = tf.global_variables_initializer()
sess.run(init)
In [19]:
print('\n Optimizing Two Gate Output to 50.')
for i in range(10):
# run the train step
sess.run(train_step, feed_dict={x_data: x_val})
# Get the a and b values
a_val, b_val = (sess.run(a), sess.run(b))
# run the two_gate graph output
two_gate_output = sess.run(two_gate, feed_dict={x_data: x_val})
print(str(a_val) + ' * ' + str(x_val) + ' + ' + str(b_val) + ' = ' + str(two_gate_output))
In [ ]: