In [1]:
import tensorflow as tf
In [2]:
mnist = tf.keras.datasets.mnist
In [8]:
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 25.0
In [9]:
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
In [10]:
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
In [13]:
model.fit(x_train, y_train, epochs = 5)
Out[13]:
In [14]:
model.evaluate(x_test, y_test)
Out[14]:
In [ ]: