In [1]:
%matplotlib inline
In [3]:
%load scripts/prep_terrain_data
In [4]:
#!/usr/bin/python
import random
def makeTerrainData(n_points=1000):
###############################################################################
### make the toy dataset
random.seed(42)
grade = [random.random() for ii in range(0,n_points)]
bumpy = [random.random() for ii in range(0,n_points)]
error = [random.random() for ii in range(0,n_points)]
y = [round(grade[ii]*bumpy[ii]+0.3+0.1*error[ii]) for ii in range(0,n_points)]
for ii in range(0, len(y)):
if grade[ii]>0.8 or bumpy[ii]>0.8:
y[ii] = 1.0
### split into train/test sets
X = [[gg, ss] for gg, ss in zip(grade, bumpy)]
split = int(0.75*n_points)
X_train = X[0:split]
X_test = X[split:]
y_train = y[0:split]
y_test = y[split:]
grade_sig = [X_train[ii][0] for ii in range(0, len(X_train)) if y_train[ii]==0]
bumpy_sig = [X_train[ii][1] for ii in range(0, len(X_train)) if y_train[ii]==0]
grade_bkg = [X_train[ii][0] for ii in range(0, len(X_train)) if y_train[ii]==1]
bumpy_bkg = [X_train[ii][1] for ii in range(0, len(X_train)) if y_train[ii]==1]
# training_data = {"fast":{"grade":grade_sig, "bumpiness":bumpy_sig}
# , "slow":{"grade":grade_bkg, "bumpiness":bumpy_bkg}}
grade_sig = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==0]
bumpy_sig = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==0]
grade_bkg = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==1]
bumpy_bkg = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==1]
test_data = {"fast":{"grade":grade_sig, "bumpiness":bumpy_sig}
, "slow":{"grade":grade_bkg, "bumpiness":bumpy_bkg}}
return X_train, y_train, X_test, y_test
# return training_data, test_data
In [5]:
%load scripts/class_vis.py
In [7]:
#!/usr/bin/python
#from udacityplots import *
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import pylab as pl
import numpy as np
#import numpy as np
#import matplotlib.pyplot as plt
#plt.ioff()
def prettyPicture(clf, X_test, y_test):
x_min = 0.0; x_max = 1.0
y_min = 0.0; y_max = 1.0
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
h = .01 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.pcolormesh(xx, yy, Z, cmap=pl.cm.seismic)
# Plot also the test points
grade_sig = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==0]
bumpy_sig = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==0]
grade_bkg = [X_test[ii][0] for ii in range(0, len(X_test)) if y_test[ii]==1]
bumpy_bkg = [X_test[ii][1] for ii in range(0, len(X_test)) if y_test[ii]==1]
plt.scatter(grade_sig, bumpy_sig, color = "b", label="fast")
plt.scatter(grade_bkg, bumpy_bkg, color = "r", label="slow")
plt.legend()
plt.xlabel("bumpiness")
plt.ylabel("grade")
plt.show()
#plt.savefig("test.png")
import base64
import json
import subprocess
def output_image(name, format, bytes):
image_start = "BEGIN_IMAGE_f9825uweof8jw9fj4r8"
image_end = "END_IMAGE_0238jfw08fjsiufhw8frs"
data = {}
data['name'] = name
data['format'] = format
data['bytes'] = base64.encodestring(bytes)
print image_start+json.dumps(data)+image_end
In [2]:
%load ../ud120-projects/choose_your_own/your_algorithm.py
In [21]:
#!/usr/bin/python
import matplotlib.pyplot as plt
#from prep_terrain_data import makeTerrainData
#from class_vis import prettyPicture
features_train, labels_train, features_test, labels_test = makeTerrainData()
### the training data (features_train, labels_train) have both "fast" and "slow" points mixed
### in together--separate them so we can give them different colors in the scatterplot,
### and visually identify them
grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==0]
bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==0]
grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==1]
bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==1]
#### initial visualization
plt.xlim(0.0, 1.0)
plt.ylim(0.0, 1.0)
plt.scatter(bumpy_fast, grade_fast, color = "b", label="fast")
plt.scatter(grade_slow, bumpy_slow, color = "r", label="slow")
plt.legend()
plt.xlabel("bumpiness")
plt.ylabel("grade")
plt.show()
#################################################################################
### your code here! name your classifier object clf if you want the
### visualization code (prettyPicture) to show you the decision boundary
from sklearn.ensemble import AdaBoostClassifier
clf = AdaBoostClassifier(n_estimators=100, learning_rate = 0.1)
clf.fit(features_train, labels_train)
pred = clf.predict(features_test)
from sklearn.metrics import accuracy_score
acc = accuracy_score(pred, labels_test)
print "Accuracy: ", acc
try:
prettyPicture(clf, features_test, labels_test)
except NameError:
pass
In [26]:
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=1000, min_samples_split = 50, n_jobs=-1, criterion='entropy')
clf.fit(features_train, labels_train)
pred = clf.predict(features_test)
from sklearn.metrics import accuracy_score
acc = accuracy_score(pred, labels_test)
print "Accuracy: ", acc
try:
prettyPicture(clf, features_test, labels_test)
except NameError:
pass
In [32]:
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=1, p=2)
clf.fit(features_train, labels_train)
pred = clf.predict(features_test)
from sklearn.metrics import accuracy_score
acc = accuracy_score(pred, labels_test)
print "Accuracy: ", acc
try:
prettyPicture(clf, features_test, labels_test)
except NameError:
pass
In [ ]: