In [2]:
%load scripts/poi_flag_email.py
In [4]:
#writefile scripts/poi_flag_email.py
#!/usr/bin/python
###
### in poiFlagEmail() below, write code that returns a boolean
### indicating if a given email is from a POI
###
import sys
import reader
import poi_emails
def getToFromStrings(f):
f.seek(0)
to_string, from_string, cc_string = reader.getAddresses(f)
to_emails = reader.parseAddresses( to_string )
from_emails = reader.parseAddresses( from_string )
cc_emails = reader.parseAddresses( cc_string )
return to_emails, from_emails, cc_emails
### POI flag an email
def poiFlagEmail(f):
""" given an email file f,
return a trio of booleans for whether that email is
to, from, or cc'ing a poi """
to_emails, from_emails, cc_emails = getToFromStrings(f)
### list of email addresses of all the POIs
poi_email_list = poi_emails.poiEmails()
to_poi = False
from_poi = False
cc_poi = False
### to_poi and cc_poi are related functions, which flag whether
### the email under inspection is addressed to a POI, or if a POI is in cc
### you don't have to change this code at all
### there can be many "to" emails, but only one "from", so the
### "to" processing needs to be a little more complicated
if to_emails:
ctr = 0
while not to_poi and ctr < len(to_emails):
if to_emails[ctr] in poi_email_list:
to_poi = True
ctr += 1
if cc_emails:
ctr = 0
while not to_poi and ctr < len(cc_emails):
if cc_emails[ctr] in poi_email_list:
cc_poi = True
ctr += 1
#################################
######## your code below ########
### set from_poi to True if #####
### the email is from a POI #####
#################################
if from_emails:
ctr = 0
while not from_poi and ctr < len(from_emails):
if from_emails[ctr] in poi_email_list:
from_poi = True
ctr += 1
#################################
return to_poi, from_poi, cc_poi
In [6]:
#from sklearn.feature_extraction.text import TfidfVectorizer
#help(TfidfVectorizer)
In [1]:
%load ../ud120-projects/feature_selection/find_signature.py
In [119]:
#!/usr/bin/python
import pickle
import numpy
numpy.random.seed(42)
### the words (features) and authors (labels), already largely processed
words_file = "../ud120-projects/text_learning/your_word_data.pkl" ### like the file you made in the last mini-project
authors_file = "../ud120-projects/text_learning/your_email_authors.pkl" ### this too
word_data = pickle.load( open(words_file, "r"))
authors = pickle.load( open(authors_file, "r") )
### test_size is the percentage of events assigned to the test set (remainder go into training)
from sklearn import cross_validation
features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(word_data, authors, test_size=0.1, random_state=42)
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
features_train = vectorizer.fit_transform(features_train).toarray()
features_test = vectorizer.transform(features_test).toarray()
### a classic way to overfit is to use a small number
### of data points and a large number of features
### train on only 150 events to put ourselves in this regime
features_train = features_train[:150]
labels_train = labels_train[:150]
### your code goes here
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(features_train, labels_train)
pred_train = model.predict(features_train)
pred_test = model.predict(features_test)
overfit_acc_train = accuracy_score(labels_train, pred_train)
overfit_acc_test = accuracy_score(labels_test, pred_test)
print len(labels_train)
print overfit_acc_test
print overfit_acc_train
In [107]:
print [x for x in sorted(model.feature_importances_, reverse=True) if x > 0.2]
In [108]:
print numpy.argmax(model.feature_importances_)
In [109]:
model.feature_importances_.max()
Out[109]:
In [111]:
[(feature,key) for key,feature in enumerate(model.feature_importances_) if feature >= 0.2]
Out[111]:
In [112]:
model.feature_importances_.size
Out[112]:
In [114]:
vectorizer.get_feature_names()[33614]
Out[114]:
In [98]:
vectorizer.get_feature_names()[14343]
Out[98]:
In [115]:
vectorizer.get_feature_names()[21323]
Out[115]:
In [ ]: