In [3]:
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# for auto-reloading extenrnal modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
In [42]:
import read_data
tf.set_random_seed(2016)
In [43]:
q = read_data.learn_string_input_producer()
q
Out[43]:
In [52]:
def main():
tf.reset_default_graph()
q = read_data.learn_string_input_producer()
q1 = q.dequeue()
q2 = q.dequeue()
q3 = q.dequeue()
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
r = sess.run([q1,q2,q3])
print(r)
coord.request_stop()
coord.join(threads)
for i in range(10):
main()
In [47]:
tf.reset_default_graph()
In [ ]: