In [2]:
from keras.models import Sequential
In [34]:
import numpy as np
X_train = np.random.rand(1000,100)
Y_train = [np.random.randint(0,5) for i in xrange(0,1000)]
In [35]:
model = Sequential()
In [36]:
from keras.layers.core import Dense,Activation
model.add(Dense(output_dim=64, input_dim=100, init="glorot_uniform"))
model.add(Activation("relu"))
model.add(Dense(output_dim=10, init="glorot_uniform"))
model.add(Activation("softmax"))
In [37]:
model.compile(loss="categorical_crossentropy", optimizer="sgd")
In [38]:
from keras.optimizers import SGD
model.compile(loss="categorical_crossentropy", optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))
In [39]:
model.fit(X_train, Y_train, nb_epoch=5, batch_size=32)
Out[39]:
In [41]:
objective_score = model.evaluate(X_train, Y_train, batch_size=32)
In [43]:
objective_score
Out[43]:
In [44]:
classes = model.predict_classes(X_train, batch_size=32)
In [46]:
proba = model.predict_proba(X_train, batch_size=32)
In [ ]:
In [ ]: