---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-104-01d018ca9eaa> in <module>()
7 for i in range(m.nLayers):
8 m.layers[i].likelihood.constrain_positive(warning=False)
----> 9 m.optimize('bfgs',messages=1,max_iters=10000)
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/model.pyc in optimize(self, optimizer, start, messages, max_iters, ipython_notebook, clear_after_finish, **kwargs)
259
260 with VerboseOptimization(self, opt, maxiters=max_iters, verbose=messages, ipython_notebook=ipython_notebook, clear_after_finish=clear_after_finish) as vo:
--> 261 opt.run(f_fp=self._objective_grads, f=self._objective, fp=self._grads)
262 vo.finish(opt)
263
/home/andreas/SoftwareNotDrpBox/GPy/GPy/inference/optimization/optimization.pyc in run(self, **kwargs)
50 def run(self, **kwargs):
51 start = dt.datetime.now()
---> 52 self.opt(**kwargs)
53 end = dt.datetime.now()
54 self.time = str(end - start)
/home/andreas/SoftwareNotDrpBox/GPy/GPy/inference/optimization/optimization.pyc in opt(self, f_fp, f, fp)
125
126 opt_result = optimize.fmin_l_bfgs_b(f_fp, self.x_init, iprint=iprint,
--> 127 maxfun=self.max_iters, **opt_dict)
128 self.x_opt = opt_result[0]
129 self.f_opt = f_fp(self.x_opt)[0]
/home/andreas/anaconda/lib/python2.7/site-packages/scipy/optimize/lbfgsb.pyc in fmin_l_bfgs_b(func, x0, fprime, args, approx_grad, bounds, m, factr, pgtol, epsilon, iprint, maxfun, maxiter, disp, callback)
186
187 res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
--> 188 **opts)
189 d = {'grad': res['jac'],
190 'task': res['message'],
/home/andreas/anaconda/lib/python2.7/site-packages/scipy/optimize/lbfgsb.pyc in _minimize_lbfgsb(fun, x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, **unknown_options)
318 # minimization routine wants f and g at the current x
319 # Overwrite f and g:
--> 320 f, g = func_and_grad(x)
321 elif task_str.startswith(b'NEW_X'):
322 # new iteration
/home/andreas/anaconda/lib/python2.7/site-packages/scipy/optimize/lbfgsb.pyc in func_and_grad(x)
269 else:
270 def func_and_grad(x):
--> 271 f = fun(x, *args)
272 g = jac(x, *args)
273 return f, g
/home/andreas/anaconda/lib/python2.7/site-packages/scipy/optimize/optimize.pyc in function_wrapper(*wrapper_args)
283 def function_wrapper(*wrapper_args):
284 ncalls[0] += 1
--> 285 return function(*(wrapper_args + args))
286
287 return ncalls, function_wrapper
/home/andreas/anaconda/lib/python2.7/site-packages/scipy/optimize/optimize.pyc in __call__(self, x, *args)
61 def __call__(self, x, *args):
62 self.x = numpy.asarray(x).copy()
---> 63 fg = self.fun(x, *args)
64 self.jac = fg[1]
65 return fg[0]
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/model.pyc in _objective_grads(self, x)
204 def _objective_grads(self, x):
205 try:
--> 206 self.optimizer_array = x
207 obj_f, self.obj_grads = self.objective_function(), self._transform_gradients(self.objective_function_gradients())
208 self._fail_count = 0
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/parameterization/parameterized.pyc in __setattr__(self, name, val)
317 except AttributeError as a:
318 raise
--> 319 return object.__setattr__(self, name, val);
320
321 #===========================================================================
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/parameterization/parameter_core.pyc in optimizer_array(self, p)
695
696 self._optimizer_copy_transformed = False
--> 697 self.trigger_update()
698
699 def _get_params_transformed(self):
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/parameterization/updateable.pyc in trigger_update(self, trigger_parent)
52 #print "Warning: updates are off, updating the model will do nothing"
53 return
---> 54 self._trigger_params_changed(trigger_parent)
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/parameterization/parameter_core.pyc in _trigger_params_changed(self, trigger_parent)
710 If trigger_parent is True, we will tell the parent, otherwise not.
711 """
--> 712 [p._trigger_params_changed(trigger_parent=False) for p in self.parameters if not p.is_fixed]
713 self.notify_observers(None, None if trigger_parent else -np.inf)
714
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/parameterization/parameter_core.pyc in _trigger_params_changed(self, trigger_parent)
711 """
712 [p._trigger_params_changed(trigger_parent=False) for p in self.parameters if not p.is_fixed]
--> 713 self.notify_observers(None, None if trigger_parent else -np.inf)
714
715 def _size_transformed(self):
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/parameterization/observable.pyc in notify_observers(self, which, min_priority)
65 if p <= min_priority:
66 break
---> 67 callble(self, which=which)
68
69 def change_priority(self, observer, callble, priority):
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/parameterization/parameter_core.pyc in _parameters_changed_notification(self, me, which)
1041 """
1042 self._optimizer_copy_transformed = False # tells the optimizer array to update on next request
-> 1043 self.parameters_changed()
1044 def _pass_through_notify_observers(self, me, which=None):
1045 self.notify_observers(which=which)
/home/andreas/Dropbox/_PhD/Software/github/Autoreg/autoreg/layers.pyc in parameters_changed(self)
187 def parameters_changed(self):
188 self._update_X()
--> 189 super(Layer,self).parameters_changed()
190 self._update_qX_gradients()
191 self._prepare_gradients()
/home/andreas/SoftwareNotDrpBox/GPy/GPy/core/sparse_gp.pyc in parameters_changed(self)
77
78 def parameters_changed(self):
---> 79 self.posterior, self._log_marginal_likelihood, self.grad_dict = self.inference_method.inference(self.kern, self.X, self.Z, self.likelihood, self.Y, self.Y_metadata)
80 self._update_gradients()
81
/home/andreas/Dropbox/_PhD/Software/github/Autoreg/autoreg/inference/vardtc.pyc in inference(self, kern, X, Z, likelihood, Y, Y_metadata, Lm, dL_dKmm)
102 beta = 1./np.fmax(likelihood.variance, 1e-6)
103
--> 104 psi0, psi2, YRY, psi1, psi1Y, Shalf, psi1S = self.gatherPsiStat(kern, X, Z, Y, beta, uncertain_inputs)
105
106 #======================================================================
/home/andreas/Dropbox/_PhD/Software/github/Autoreg/autoreg/inference/vardtc.pyc in gatherPsiStat(self, kern, X, Z, Y, beta, uncertain_inputs)
59 psi0 = kern.psi0(Z, X)
60 psi1 = kern.psi1(Z, X)*beta
---> 61 psi2 = kern.psi2(Z, X)*beta
62 else:
63 psi0 = kern.Kdiag(X)
/home/andreas/SoftwareNotDrpBox/GPy/GPy/kern/src/kernel_slice_operations.pyc in wrap(self, Z, variational_posterior)
138 def wrap(self, Z, variational_posterior):
139 with _Slice_wrap(self, Z, variational_posterior) as s:
--> 140 ret = f(self, s.X, s.X2)
141 return ret
142 return wrap
/home/andreas/SoftwareNotDrpBox/GPy/GPy/kern/src/rbf.pyc in psi2(self, Z, variational_posterior)
69
70 def psi2(self, Z, variational_posterior):
---> 71 return self.psicomp.psicomputations(self, Z, variational_posterior, return_psi2_n=False)[2]
72
73 def psi2n(self, Z, variational_posterior):
/home/andreas/SoftwareNotDrpBox/GPy/GPy/util/caching.pyc in __call__(self, *args, **kwargs)
182 except KeyError:
183 cacher = caches[self.f] = Cacher(self.f, self.limit, self.ignore_args, self.force_kwargs)
--> 184 return cacher(*args, **kwargs)
185
186 class Cache_this(object):
/home/andreas/SoftwareNotDrpBox/GPy/GPy/util/caching.pyc in __call__(self, *args, **kw)
118 # 3: This is when we never saw this chache_id:
119 self.ensure_cache_length(cache_id)
--> 120 self.add_to_cache(cache_id, inputs, self.operation(*args, **kw))
121 except:
122 self.reset()
/home/andreas/SoftwareNotDrpBox/GPy/GPy/kern/src/psi_comp/__init__.pyc in psicomputations(self, kern, Z, variational_posterior, return_psi2_n)
26 variance, lengthscale = kern.variance, kern.lengthscale
27 if isinstance(variational_posterior, variational.NormalPosterior):
---> 28 return rbf_psi_comp.psicomputations(variance, lengthscale, Z, variational_posterior, return_psi2_n=return_psi2_n)
29 elif isinstance(variational_posterior, variational.SpikeAndSlabPosterior):
30 return ssrbf_psi_comp.psicomputations(variance, lengthscale, Z, variational_posterior)
/home/andreas/SoftwareNotDrpBox/GPy/GPy/kern/src/psi_comp/rbf_psi_comp.pyc in psicomputations(variance, lengthscale, Z, variational_posterior, return_psi2_n)
17 psi1 = _psi1computations(variance, lengthscale, Z, mu, S)
18 psi2 = _psi2computations(variance, lengthscale, Z, mu, S)
---> 19 if not return_psi2_n: psi2 = psi2.sum(axis=0)
20 return psi0, psi1, psi2
21
/home/andreas/anaconda/lib/python2.7/site-packages/numpy/core/_methods.pyc in _sum(a, axis, dtype, out, keepdims)
30
31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
---> 32 return umr_sum(a, axis, dtype, out, keepdims)
33
34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):
KeyboardInterrupt: