In [1]:
import autoreg
import GPy
import numpy as np
from matplotlib import pyplot as plt
from __future__ import print_function
%matplotlib inline

from autoreg.benchmark import tasks

In [2]:
# Function to compute root mean square error:

def comp_RMSE(a,b):
    return np.sqrt(np.square(a-b).mean())

In [3]:
# Define class for normalization
class Normalize(object):
    
    def __init__(self, data, name, norm_name):
        
        self.data_mean = data.mean(axis=0)
        self.data_std = data.std(axis=0)
        self.normalization_computed = True
        
        setattr(self, name, data)                         
        setattr(self, norm_name, (data-self.data_mean) / self.data_std )
        
    def normalize(self, data, name, norm_name):
            if hasattr(self,norm_name):
                raise ValueError("This normalization name already exist, choose another one")
            
            setattr(self, name, data )
            setattr(self, norm_name, (data-self.data_mean) / self.data_std )
            
            
                                     
    def denormalize(self, data):
                                   
        return data*self.data_std + self.data_mean

In [4]:
trainned_models_folder_name = "/Users/grigoral/work/code/RGP/examples/identif_trainded"
task_name = 'Drive'
# task names:
# Actuator, Ballbeam, Drive, Gas_furnace, Flutter, Dryer, Tank,
# IdentificationExample1..5

In [5]:
task = getattr( tasks, task_name)
task = task()
task.load_data()
print("Data OUT train shape:  ", task.data_out_train.shape)
print("Data IN train shape:  ", task.data_in_train.shape)
print("Data OUT test shape:  ", task.data_out_test.shape)
print("Data IN test shape:  ", task.data_in_test.shape)


Data OUT train shape:   (250, 1)
Data IN train shape:   (250, 1)
Data OUT test shape:   (250, 1)
Data IN test shape:   (250, 1)

Normalize training and test data:


In [6]:
normalize = False
in_data = Normalize(task.data_in_train,'in_train','in_train_norm' )
out_data = Normalize(task.data_out_train,'out_train','out_train_norm' )

in_data.normalize(task.data_in_test, 'in_test','in_test_norm')
out_data.normalize(task.data_out_test, 'out_test','out_test_norm')

if normalize:
    out_train = out_data.out_train_norm #out_data.out_train 
    in_train = in_data.in_train_norm # in_data.in_train
    out_test = out_data.out_test_norm #out_data.out_test
    in_test = in_data.in_test_norm #in_data.in_test
else:
    out_train = out_data.out_train  #out_data.out_train 
    in_train = in_data.in_train # in_data.in_train
    out_test = out_data.out_test #out_data.out_test
    in_test = in_data.in_test #in_data.in_test

print("Training OUT mean:  ", out_train.mean(0)); 
print("Training OUT std:  ", out_train.std(0))
print("")
print("Test OUT mean:  ", out_test.mean(0)); 
print("Test OUT std:  ", out_test.std(0))
print("")
print("Training IN mean:  ", in_train.mean(0)); 
print("Training IN std:  ", in_train.std(0))
print("")
print("Test IN mean:  ", in_test.mean(0)); 
print("Test IN std:  ", in_test.std(0))


Training OUT mean:   [ -7.10542736e-18]
Training OUT std:   [ 1.]

Test OUT mean:   [-0.00241894]
Test OUT std:   [ 1.070077]

Training IN mean:   [ 0.]
Training IN std:   [ 1.]

Test IN mean:   [-0.3646984]
Test IN std:   [ 0.99258333]

Plot training and test data:


In [7]:
# Plot training:
fig1 = plt.figure(1,figsize=(20,8))
fig1.suptitle('Training data')
ax1 = plt.subplot(1,2,1)
ax1.plot(out_train)
ax1.set_title('Data OUT training')

ax2 = plt.subplot(1,2,2)
ax2.plot(in_train)
ax2.set_title('Data IN training')

fig2 = plt.figure(2,figsize=(20,8))
fig2.suptitle('Test data')
ax3 = plt.subplot(1,2,1)
ax3.plot(out_test)
ax3.set_title('Data OUT test')

ax4 = plt.subplot(1,2,2)
ax4.plot(in_test)
ax4.set_title('Data IN test')

del ax1, ax2, ax3, ax4


Model definition:


In [8]:
Q = 50 # 200 # Inducing points num
win_in = task.win_in # 20
win_out = task.win_out # 20
use_controls = True
back_cstr = False
inference_method = 'svi'
wins = [0, win_out] # 0-th is output layer
#wins = [win_out, ] # 0-th is output layer

MLP_dims = [300,200]
nDims = [out_train.shape[1],1]
print("Input window:  ", win_in)
print("Output window:  ", win_out)


m = autoreg.DeepAutoreg_new(wins, out_train, U=in_train, U_win=win_in,
                        num_inducing=Q, back_cstr=back_cstr, MLP_dims=MLP_dims, nDims=nDims,
                        init='Y', # how to initialize hidden states means
                        X_variance=0.01, # how to initialize hidden states variances
                        inference_method=inference_method, # Inference method
                        kernels=[GPy.kern.RBF(win_out,ARD=True,inv_l=True),
                                 GPy.kern.RBF(win_in + win_out,ARD=True,inv_l=True)] )

#m = autoreg.DeepAutoreg([0,win_out],out_train, U=in_train, U_win=win_in,X_variance=0.01,
#                        num_inducing=50)

# pattern for model name: #task_name, inf_meth=?, wins=layers, Q = ?, backcstr=?,MLP_dims=?, nDims=
model_file_name = '%s--inf_meth=%s--wins=%s--Q=%i--backcstr=%i--nDims=%s' % (task.name, 
    'reg' if inference_method is None else inference_method, str(wins), Q, back_cstr, str(nDims))
if back_cstr == True:
    model_file_name += '--MLP_dims=%s' % (MLP_dims,)
    
print('Model file name:  ',  model_file_name)
print(m)


Input window:   10
Output window:   10
Model file name:   drive--inf_meth=reg--wins=[0, 10]--Q=50--backcstr=0--nDims=[1, 1]

Name : autoreg
Objective : 14035.5925994
Number of Parameters : 2034
Number of Optimization Parameters : 2034
Updates : True
Parameters:
  autoreg.                         |     value  |  constraints  |  priors
  layer_1.inducing_inputs          |  (50, 20)  |               |        
  layer_1.rbf.variance             |       1.0  |      +ve      |        
  layer_1.rbf.inv_lengthscale      |     (20,)  |      +ve      |        
  layer_1.Gaussian_noise.variance  |      0.01  |      +ve      |        
  layer_1.qX_0.mean                |  (250, 1)  |               |        
  layer_1.qX_0.variance            |  (250, 1)  |      +ve      |        
  layer_0.inducing_inputs          |  (50, 10)  |               |        
  layer_0.rbf.variance             |       1.0  |      +ve      |        
  layer_0.rbf.inv_lengthscale      |     (10,)  |      +ve      |        
  layer_0.Gaussian_noise.variance  |       1.0  |      +ve      |        

Model initialization:


In [9]:
# Here layer numbers are different than in initialization. 0-th layer is the top one
for i in range(m.nLayers):
    m.layers[i].kern.inv_l[:]  = np.mean( 1./((m.layers[i].X.mean.values.max(0)-m.layers[i].X.mean.values.min(0))/np.sqrt(2.)) )
    m.layers[i].likelihood.variance[:] = 0.01*out_train.var()
    m.layers[i].kern.variance.fix(warning=False)
    m.layers[i].likelihood.fix(warning=False)
print(m)


Name : autoreg
Objective : 11061.0607615
Number of Parameters : 2034
Number of Optimization Parameters : 2030
Updates : True
Parameters:
  autoreg.                         |     value  |  constraints  |  priors
  layer_1.inducing_inputs          |  (50, 20)  |               |        
  layer_1.rbf.variance             |       1.0  |   fixed +ve   |        
  layer_1.rbf.inv_lengthscale      |     (20,)  |      +ve      |        
  layer_1.Gaussian_noise.variance  |      0.01  |   fixed +ve   |        
  layer_1.qX_0.mean                |  (250, 1)  |               |        
  layer_1.qX_0.variance            |  (250, 1)  |      +ve      |        
  layer_0.inducing_inputs          |  (50, 10)  |               |        
  layer_0.rbf.variance             |       1.0  |   fixed +ve   |        
  layer_0.rbf.inv_lengthscale      |     (10,)  |      +ve      |        
  layer_0.Gaussian_noise.variance  |      0.01  |   fixed +ve   |        

In [10]:
print(m.layer_1.kern.inv_l)
print(m.layer_0.kern.inv_l)
print( np.mean(1./((m.layer_1.X.mean.values.max(0)-m.layer_1.X.mean.values.min(0))/np.sqrt(2.))) )


  index  |  autoreg.layer_1.rbf.inv_lengthscale  |  constraints  |  priors
  [0]    |                           0.51860490  |      +ve      |        
  [1]    |                           0.51860490  |      +ve      |        
  [2]    |                           0.51860490  |      +ve      |        
  [3]    |                           0.51860490  |      +ve      |        
  [4]    |                           0.51860490  |      +ve      |        
  [5]    |                           0.51860490  |      +ve      |        
  [6]    |                           0.51860490  |      +ve      |        
  [7]    |                           0.51860490  |      +ve      |        
  [8]    |                           0.51860490  |      +ve      |        
  [9]    |                           0.51860490  |      +ve      |        
  [10]   |                           0.51860490  |      +ve      |        
  [11]   |                           0.51860490  |      +ve      |        
  [12]   |                           0.51860490  |      +ve      |        
  [13]   |                           0.51860490  |      +ve      |        
  [14]   |                           0.51860490  |      +ve      |        
  [15]   |                           0.51860490  |      +ve      |        
  [16]   |                           0.51860490  |      +ve      |        
  [17]   |                           0.51860490  |      +ve      |        
  [18]   |                           0.51860490  |      +ve      |        
  [19]   |                           0.51860490  |      +ve      |        
  index  |  autoreg.layer_0.rbf.inv_lengthscale  |  constraints  |  priors
  [0]    |                           0.33921267  |      +ve      |        
  [1]    |                           0.33921267  |      +ve      |        
  [2]    |                           0.33921267  |      +ve      |        
  [3]    |                           0.33921267  |      +ve      |        
  [4]    |                           0.33921267  |      +ve      |        
  [5]    |                           0.33921267  |      +ve      |        
  [6]    |                           0.33921267  |      +ve      |        
  [7]    |                           0.33921267  |      +ve      |        
  [8]    |                           0.33921267  |      +ve      |        
  [9]    |                           0.33921267  |      +ve      |        
0.518604903419

In [11]:
# Plot initialization of hidden layer:
def plot_hidden_states(layer, layer_start_point=None, layer_end_point=None,
                              data_start_point=None, data_end_point=None):
    if layer_start_point is None: layer_start_point=0;
    if layer_end_point is None: layer_end_point = len(layer.mean)
    
    if data_start_point is None: data_start_point=0;
    if data_end_point is None: layer_end_point = len(out_train)
        
    data = out_train[data_start_point:data_end_point]
    layer_means = layer.mean[layer_start_point:layer_end_point]
    layer_vars = layer.variance[layer_start_point:layer_end_point]

    fig4 = plt.figure(10,figsize=(10,8))
    ax1 = plt.subplot(1,1,1)
    fig4.suptitle('Hidden layer plotting')
    ax1.plot(out_train[data_start_point:data_end_point], label="Orig data Train_out", color = 'b')
    ax1.plot( layer_means, label = 'pred mean', color = 'r' )
    ax1.plot( layer_means +\
                     2*np.sqrt( layer_vars ), label = 'pred var', color='r', linestyle='--' )
    ax1.plot( layer_means -\
                     2*np.sqrt( layer_vars ), label = 'pred var', color='r', linestyle='--' )
    ax1.legend(loc=4)        
    ax1.set_title('Hidden layer vs Training data')

    del ax1

plot_hidden_states(m.layer_1.qX_0)


Model training:


In [12]:
#init_runs = 50 if out_train.shape[0]<1000 else 100
init_runs = 100
print("Init runs:  ", init_runs)
m.optimize('bfgs',messages=1,max_iters=init_runs)
for i in range(m.nLayers):
    m.layers[i].kern.variance.constrain_positive(warning=False)
    m.layers[i].likelihood.constrain_positive(warning=False)
m.optimize('bfgs',messages=1,max_iters=10000)

print(m)


Init runs:   100
Running L-BFGS-B (Scipy implementation) Code:
  runtime   i     f              |g|        
    00s19  001   1.106106e+04   4.566031e+06 
    02s23  027   7.930074e+01   9.705543e+02 
    03s25  040   2.403556e+01   3.809000e+02 
    07s39  092  -1.041005e+01   8.497805e+02 
    08s10  102  -1.331754e+01   7.394931e+01 
Runtime:     08s10
Optimization status: Maximum number of f evaluations reached

Running L-BFGS-B (Scipy implementation) Code:
  runtime   i       f              |g|        
    00s16  00001  -1.331754e+01   3.117103e+03 
    02s21  00027  -5.739764e+01   4.396257e+02 
    08s39  00100  -8.024218e+01   1.889021e+02 
    21s73  00269  -9.212730e+01   1.186566e+01 
 01m03s04  00782  -9.753583e+01   6.713370e+00 
 02m31s57  01702  -9.936768e+01   4.849250e+00 
Runtime:  02m31s57
Optimization status: ErrorABNORMAL_TERMINATION_IN_LNSRCH


Name : autoreg
Objective : -99.3688945099
Number of Parameters : 2034
Number of Optimization Parameters : 2034
Updates : True
Parameters:
  autoreg.                         |             value  |  constraints  |  priors
  layer_1.inducing_inputs          |          (50, 20)  |               |        
  layer_1.rbf.variance             |     14.9425928631  |      +ve      |        
  layer_1.rbf.inv_lengthscale      |             (20,)  |      +ve      |        
  layer_1.Gaussian_noise.variance  |   0.0288741593584  |      +ve      |        
  layer_1.qX_0.mean                |          (250, 1)  |               |        
  layer_1.qX_0.variance            |          (250, 1)  |      +ve      |        
  layer_0.inducing_inputs          |          (50, 10)  |               |        
  layer_0.rbf.variance             |     7.84434096576  |      +ve      |        
  layer_0.rbf.inv_lengthscale      |             (10,)  |      +ve      |        
  layer_0.Gaussian_noise.variance  |  0.00137765117478  |      +ve      |        

Look at trained parameters


In [13]:
if hasattr(m, 'layer_1'):
    print("Layer 1:  ")
    print("States means (min and max), shapes:  ", m.layer_1.qX_0.mean.min(), 
          m.layer_1.qX_0.mean.max(), m.layer_1.qX_0.mean.shape)
    print("States variances (min and max), shapes:  ", m.layer_1.qX_0.variance.min(), 
          m.layer_1.qX_0.variance.max(), m.layer_1.qX_0.mean.shape)
    print("Inverse langthscales (min and max), shapes:  ", m.layer_1.rbf.inv_lengthscale.min(),
          m.layer_1.rbf.inv_lengthscale.max(), m.layer_1.rbf.inv_lengthscale.shape )
    
if hasattr(m, 'layer_0'):
    print("")
    print("Layer 0 (output):  ")
    print("Inverse langthscales (min and max), shapes:  ", m.layer_0.rbf.inv_lengthscale.min(),
          m.layer_0.rbf.inv_lengthscale.max(), m.layer_0.rbf.inv_lengthscale.shape )


Layer 1:  
States means (min and max), shapes:   -3.37435167437 4.03707192953 (250, 1)
States variances (min and max), shapes:   0.00314490615013 0.969480355621 (250, 1)
Inverse langthscales (min and max), shapes:   3.39488682322e-08 0.489488208535 (20,)

Layer 0 (output):  
Inverse langthscales (min and max), shapes:   3.35832606027e-09 0.013400256514 (10,)

In [14]:
print(m.layer_0.rbf.inv_lengthscale)


  index  |  autoreg.layer_0.rbf.inv_lengthscale  |  constraints  |  priors
  [0]    |                           0.00000000  |      +ve      |        
  [1]    |                           0.00000000  |      +ve      |        
  [2]    |                           0.00000000  |      +ve      |        
  [3]    |                           0.00000001  |      +ve      |        
  [4]    |                           0.00000001  |      +ve      |        
  [5]    |                           0.00000004  |      +ve      |        
  [6]    |                           0.01340026  |      +ve      |        
  [7]    |                           0.00133296  |      +ve      |        
  [8]    |                           0.00163534  |      +ve      |        
  [9]    |                           0.00799696  |      +ve      |        

In [15]:
print(m.layer_1.rbf.inv_lengthscale)


  index  |  autoreg.layer_1.rbf.inv_lengthscale  |  constraints  |  priors
  [0]    |                           0.00000003  |      +ve      |        
  [1]    |                           0.00075395  |      +ve      |        
  [2]    |                           0.00000006  |      +ve      |        
  [3]    |                           0.00000006  |      +ve      |        
  [4]    |                           0.00957067  |      +ve      |        
  [5]    |                           0.00000008  |      +ve      |        
  [6]    |                           0.00000007  |      +ve      |        
  [7]    |                           0.00314702  |      +ve      |        
  [8]    |                           0.00000010  |      +ve      |        
  [9]    |                           0.03682365  |      +ve      |        
  [10]   |                           0.10301182  |      +ve      |        
  [11]   |                           0.00000034  |      +ve      |        
  [12]   |                           0.00000030  |      +ve      |        
  [13]   |                           0.00036871  |      +ve      |        
  [14]   |                           0.00000020  |      +ve      |        
  [15]   |                           0.00981815  |      +ve      |        
  [16]   |                           0.00000028  |      +ve      |        
  [17]   |                           0.48948821  |      +ve      |        
  [18]   |                           0.00000009  |      +ve      |        
  [19]   |                           0.00000009  |      +ve      |        

Analyze and plot model on test data:


In [16]:
# Free-run on the train data
init_Xs = [None, m.layer_1.qX_0[0:win_out]] # init_Xs for train prediction
predictions_train = m.freerun(init_Xs = init_Xs, U=in_train, m_match=True)

# Free-run on the test data
init_Xs = [None, m.layer_1.qX_0[-win_out:] ] # init_Xs for test prediction
U_test = np.vstack( (in_train[-win_in:], in_test) )
predictions_test = m.freerun(init_Xs = init_Xs, U=U_test, m_match=True)
del init_Xs, U_test

In [17]:
# Plot predictions
def plot_predictions(fig_no,posterior_train, posterior_test=None, layer_no = None):
    """
    Plots the output data along with posterior of the layer.
    Used for plotting the hidden states or
    
    layer_no: int or Normal posterior
        plot states of this layer (0-th is output). There is also some logic about compting
        the MSE, and aligning with actual data.
    """
    
    if layer_no is None: #default
        layer_no = 1

    if posterior_test is None:
        no_test_data = True
    else:
        no_test_data = False

    if isinstance(posterior_train, list): 
        layer_in_list = len(predictions_train)-1-layer_no # standard layer no (like in printing the model)
        predictions_train_layer = predictions_train[layer_in_list]
    else:
        predictions_train_layer = posterior_train

    if not no_test_data:
        if isinstance(posterior_test, list): 
            predictions_test_layer = predictions_test[layer_in_list]
        else:
            predictions_test_layer = posterior_test

    # Aligning the data ->
    # training of test data can be longer than leyer data because of the initial window.
    if out_train.shape[0] > predictions_train_layer.mean.shape[0]:
        out_train_tmp = out_train[win_out:]
    else:
        out_train_tmp = out_train
        
    if out_test.shape[0] > predictions_test_layer.mean.shape[0]:
        out_test_tmp = out_test[win_out:]
    else:
        out_test_tmp = out_test
    # Aligning the data <-
        
    if layer_no == 0:
        # Not anymore! Compute RMSE ignoring first output values of length "win_out"
        train_rmse = [comp_RMSE(predictions_train_layer.mean,
                                out_train_tmp)]
        print("Train overall RMSE: ", str(train_rmse))
        
        if not no_test_data:
            # Compute RMSE ignoring first output values of length "win_out"
            test_rmse = [comp_RMSE(predictions_test_layer.mean,
                                   out_test_tmp)]
            print("Test overall RMSE: ", str(test_rmse))
    
    # Plot predictions:
    if not no_test_data:
        fig5 = plt.figure(10,figsize=(20,8))
    else:
        fig5 = plt.figure(10,figsize=(10,8))
        
    fig5.suptitle('Predictions on Training and Test data')
    if not no_test_data:
        ax1 = plt.subplot(1,2,1)
    else:
        ax1 = plt.subplot(1,1,1)
    ax1.plot(out_train_tmp, label="Train_out", color = 'b')
    ax1.plot( predictions_train_layer.mean, label = 'pred mean', color = 'r' )
    ax1.plot( predictions_train_layer.mean +\
                     2*np.sqrt( predictions_train_layer.variance ), label = 'pred var', color='r', linestyle='--' )
    ax1.plot( predictions_train_layer.mean -\
                     2*np.sqrt( predictions_train_layer.variance ), label = 'pred var', color='r', linestyle='--' )
    ax1.legend(loc=4)        
    ax1.set_title('Predictions on Train')

    if not no_test_data:
        ax2 = plt.subplot(1,2,2)
        ax2.plot(out_test_tmp, label="Test_out", color = 'b')

        ax2.plot( predictions_test_layer.mean, label = 'pred mean', color = 'r' )
        #ax2.plot( predictions_test_layer.mean +\
        #                 2*np.sqrt( predictions_test_layer.variance ), label = 'pred var', color='r', linestyle='--' )
        #ax2.plot( predictions_test_layer.mean -\
        #                 2*np.sqrt( predictions_test_layer.variance ), label = 'pred var', color='r', linestyle='--' )
        ax2.legend(loc=4)        
        ax2.set_title('Predictions on Test')

        del ax2
    del ax1 
plot_predictions(7,predictions_train, predictions_test , layer_no = 0)


Train overall RMSE:  [0.92797975896598406]
Test overall RMSE:  [1.0584096772475249]

In [18]:
predictions_test[-1].mean.shape


Out[18]:
(1,)

In [19]:
comp_RMSE(np.zeros( (len(out_train[20:]),1) ), out_train[20:] )


Out[19]:
0.99499977594340561

In [20]:
out_train[20:].mean(0)


Out[20]:
array([ 0.04416444])

In [21]:
plot_hidden_states(m.layer_1.qX_0)



In [ ]: