In [ ]:
# -*- coding:utf-8 -*-
import matplotlib as mpl
import tushare as ts
import matplotlib.pyplot as plt
import matplotlib.finance as mpf
%matplotlib inline

In [ ]:
start_date = '2017-07-01'
end_date = '2017-11-01'
stock_selected = '000050'
data = ts.get_k_data(stock_selected,start_date,end_date)

In [ ]:
# 导入两个涉及的库
from matplotlib.pylab import date2num
import datetime
import numpy as np
import pandas as pd

In [ ]:
data[data['volume']==0]=np.nan
data=data.dropna()
data.sort_values(by='date',ascending=True,inplace=True)

In [ ]:
data.date=pd.to_datetime(data.date)
#ransfer date to numbers
data.date=data.date.apply(lambda x:date2num(x))

In [ ]:
#re-org the data as requried
data=data[['date','open','close','high','low','volume']]

In [ ]:
#change data to matrix
data_mat=data.as_matrix()

In [ ]:
data_mat[:,5]
#need learn how to operate matrix data here

In [ ]:
fig,ax=plt.subplots(figsize=(1200/72,240/72))
fig.subplots_adjust(bottom=0.5)
mpf.candlestick_ochl(ax,data_mat,colordown='r', colorup='b',width=0.3,alpha=1)
ax.grid(True)
ax.xaxis_date()
plt.show()

In [ ]:
fig,(ax1,ax2)=plt.subplots(2,sharex=True,figsize=(1200/72,480/72))
mpf.candlestick_ochl(ax1,data_mat,colordown='g', colorup='r',width=0.3,alpha=1)
ax1.grid(True)
ax1.xaxis_date()

plt.bar(data_mat[:,0],data_mat[:,5],width=0.5)
ax2.set_ylabel('Volume')
ax2.grid(True)

plt.show()

In [48]:
data.date.values


Out[48]:
array([ 736513.,  736514.,  736515.,  736516.,  736517.,  736520.,
        736521.,  736522.,  736523.,  736524.,  736527.,  736528.,
        736529.,  736530.,  736531.,  736534.,  736535.,  736536.,
        736537.,  736538.,  736541.,  736542.,  736543.,  736544.,
        736545.,  736548.,  736549.,  736550.,  736551.,  736552.,
        736555.,  736556.,  736557.,  736558.,  736559.,  736562.,
        736563.,  736564.,  736565.,  736566.,  736569.,  736570.,
        736571.,  736572.,  736573.,  736576.,  736577.,  736578.,
        736579.,  736580.,  736583.,  736584.,  736585.,  736586.,
        736587.,  736590.,  736591.,  736592.,  736593.,  736594.,
        736597.,  736598.,  736599.,  736600.,  736601.,  736611.,
        736612.,  736613.,  736614.,  736615.,  736618.,  736619.,
        736620.,  736621.,  736622.,  736625.,  736626.,  736627.,
        736628.,  736629.,  736632.,  736633.,  736634.])

In [ ]:


In [ ]:


In [ ]: