In [2]:
from chxanalys.chx_libs import np, roi, time, datetime, os, getpass, db, get_images,LogNorm, plt,ManualMask
from chxanalys.chx_generic_functions import (get_detector, get_fields, get_sid_filenames,load_data,
RemoveHot, show_img, get_avg_img, reverse_updown)
%matplotlib notebook
In [3]:
path = '/XF11ID/analysis/2016_3/masks/'
print ("The analysis results will be saved in : %s"%path)
In [33]:
uid = '050e24'
uid = '1f0706'
uid = 'af8f66'
uid = 'bb6c9c' #count : 1 ['bb6c9c'] (scan num: 83) (Measurement: coralpor .002x5000 )
uid = '152a52' # count : 1 ['152a52'] (scan num: 88) (Measurement: direct beam )
uid = 'a80590' #count : 1 ['a80590'] (scan num: 89) (Measurement: air scattering for mask )
In [34]:
detector = get_detector( db[uid ] )
print ('Detector is: %s'%detector )
sud = get_sid_filenames(db[uid])
print ('scan_id, full-uid, data path are: %s--%s--%s'%(sud[0], sud[1], sud[2][0] ))
In [35]:
#imgs = load_data( uid, detector, reverse= True )
imgs = load_data( uid, detector, reverse= False )
md = imgs.md
In [36]:
imgs
Out[36]:
In [37]:
Nimg=len(imgs)
In [ ]:
In [38]:
md['pixel_mask'] = 1- np.int_( np.array( md['pixel_mask'], dtype= bool) )
In [ ]:
In [ ]:
In [25]:
show_img( imgs[0] , vmin=.0001, vmax=1000, logs=True, image_name ='uid=%s'%uid )
In [ ]:
In [39]:
show_img(md['pixel_mask'], vmin=0, vmax=1, image_name ='pixel_mask--uid=%s'%uid )
In [28]:
imgs.shape
Out[28]:
In [29]:
2167 - 799
Out[29]:
In [ ]:
In [30]:
avg_img = get_avg_img( imgs, sampling = 1000, plot_ = True, uid =uid)
In [ ]:
In [42]:
show_img( avg_img*md['pixel_mask'], vmin= .1, vmax= 5,
logs= True, aspect=1.,image_name ='img*pixel_mask--uid=%s'%uid )
In [15]:
avg_img.shape
Out[15]:
In [16]:
show_img( avg_img*md['pixel_mask'], vmin= 1, vmax= 1000, aspect=1.,
logs= True, image_name ='img*pixel_mask--uid=%s'%uid )
In [17]:
show_img( avg_img*md['pixel_mask'], vmin= 1, vmax= 1000, xlim=[1000, 2070], ylim=[1000, 1500], aspect=1.,
logs= True, image_name ='img*pixel_mask--uid=%s'%uid )
In [44]:
avg_img.shape
Out[44]:
In [45]:
mask_rh = RemoveHot( avg_img, 5E4, plot_=True)
In [46]:
fig, ax = plt.subplots()
m = ManualMask(ax, avg_img* md['pixel_mask']*mask_rh,
cmap='viridis',origin='lower',
vmin=.01, vmax=1.50)
plt.show()
In [ ]:
In [49]:
new_mask = m.mask
manu_mask = new_mask.copy()
fig, ax = plt.subplots()
im=ax.imshow(new_mask,origin='lower' ,vmin=0, vmax=1,cmap='viridis')
fig.colorbar(im)
plt.show()
In [50]:
manu_mask = new_mask.copy()
In [51]:
from skimage.draw import line_aa, line, polygon
In [101]:
#old_center = [1227, 1258]
#new_center = [ 1327, 1358]
#center of beam stop
bst_mask = np.zeros_like( avg_img , dtype = bool)
x = np.array( [ 1200 + 100, 2070, 2070, 1200 + 100])
y = np.array( [ 1245, 1245, 1285, 1285]) + 100
rr, cc = polygon( y,x)
bst_mask[rr,cc] =1
#the V-beam stop
slit_mask_V = np.zeros_like( avg_img , dtype = bool)
w= 10
x = np.array( [ 1227 - w, 1227 +w, 1227+w, 1227-w]) + 100
y = np.array( [ 1258, 1258, 0,0 ]) + 100
rr, cc = polygon( y,x)
slit_mask_V[rr,cc] =1
#the V-beam stop
slit_mask_V2 = np.zeros_like( avg_img , dtype = bool)
w= 15
x = np.array( [ 1227 - w, 1227 +w, 1227+ 25, 1227-25]) + 100
y = np.array( [ 1258 + 100, 1258 + 100, 2167, 2167 ])
rr, cc = polygon( y,x)
slit_mask_V2[rr,cc] =1
#the H-beam stop
slit_mask_H = np.zeros_like( avg_img , dtype = bool)
w=10
x = np.array( [ 0 + 100,0 + 100, 2070, 2070])
y = np.array( [ 1258-w, 1258+w, 1258+w, 1258-w ]) + 100
rr, cc = polygon( y,x)
slit_mask_H[rr,cc] =1
#the beam stop center
bst_c = np.zeros_like( avg_img , dtype = bool)
x = np.array( [1200, 1200, 1227, 1253, 1253, 1227]) + 100
y = np.array( [ 1272, 1246, 1225, 1246, 1272, 1286]) + 100
rr, cc = polygon( y,x)
bst_c[rr,cc] =1
full_mask=~bst_mask * ~slit_mask_V * ~slit_mask_V2 * ~slit_mask_H * ~bst_c
In [45]:
#center of beam stop
bst_mask = np.zeros_like( avg_img , dtype = bool)
x = np.array( [ 1300, 1354, 1354, 1300])
y = np.array( [ 1300, 1300, 2103, 2103])
rr, cc = polygon( y,x)
bst_mask[rr,cc] =1
bst_mask2 = np.zeros_like( avg_img , dtype = bool)
x = np.array( [ 1155, 1155, 2070, 2070])
y = np.array( [ 1900, 2029, 2121, 1900])
rr, cc = polygon( y,x)
bst_mask2[rr,cc] =1
full_mask=~bst_mask * ~bst_mask2
In [86]:
#center of beam stop
bst_mask = np.zeros_like( avg_img , dtype = bool)
x = np.array( [ 0, 1342, 2070, 2070, 1342, 0])
y = np.array( [ 1340, 1345, 1350, 1380, 1375, 1370])
rr, cc = polygon( y,x)
bst_mask[rr,cc] =1
bst_mask2 = np.zeros_like( avg_img , dtype = bool)
x = np.array( [ 1326, 1360, 1360, 1326])
y = np.array( [ 0, 0, 2167, 2167 ])
rr, cc = polygon( y,x)
bst_mask2[rr,cc] =1
full_mask=~bst_mask * ~bst_mask2
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [87]:
show_img(full_mask)
In [88]:
mask = np.array ( full_mask * md['pixel_mask']*mask_rh *~manu_mask , dtype = bool )
In [89]:
fig, ax = plt.subplots()
#new_mask =
im=ax.imshow( (~mask) * avg_img,origin='lower' ,
norm= LogNorm( vmin=0.001, vmax=30 ), cmap='viridis')
#im = ax.imshow(avg_img, cmap='viridis',origin='lower', norm= LogNorm( vmin=0.001, vmax=100 ) )
plt.show()
In [90]:
fig, ax = plt.subplots()
#new_mask =
#im=ax.imshow( (Mask) * avg_img,origin='lower' ,
# norm= LogNorm( vmin=0.001, vmax=30 ), cmap='viridis')
#im = ax.imshow((mask)*avg_img, cmap='viridis',origin='lower', norm= LogNorm( vmin=0.001, vmax=100 ) )
im = ax.imshow((mask)*avg_img, cmap='viridis',origin='lower', norm= LogNorm( vmin=1, vmax=1000 ) )
plt.show()
In [91]:
#mask = np.array ( ~new_mask* ~plgon_mask * md['pixel_mask']*mask_rh, dtype = bool )
fig, ax = plt.subplots()
im=ax.imshow(mask, origin='lower' ,vmin=0, vmax=1,cmap='viridis')
fig.colorbar(im)
plt.show()
In [92]:
np.save( path + uid +"_mask", mask)
In [108]:
#np.save( path + 'July3' +"_mask", mask)
In [93]:
path + uid +"_mask"
Out[93]:
In [94]:
np.save( path + 'Aug14' +"_mask", mask)
In [ ]:
In [ ]:
In [ ]:
In [ ]: