XPCS&XSVS Pipeline for Single-(Gi)-SAXS Run

"This notebook corresponds to version {{ version }} of the pipeline tool: https://github.com/NSLS-II/pipelines"

This notebook begins with a raw time-series of images and ends with $g_2(t)$ for a range of $q$, fit to an exponential or stretched exponential, and a two-time correlation functoin.

Overview

  • Setup: load packages/setup path
  • Load Metadata & Image Data
  • Apply Mask
  • Clean Data: shutter open/bad frames
  • Get Q-Map
  • Get 1D curve
  • Define Q-ROI (qr, qz)
  • Check beam damage
  • One-time Correlation
  • Fitting
  • Two-time Correlation The important scientific code is imported from the chxanalys and scikit-beam project. Refer to chxanalys and scikit-beam for additional documentation and citation information.

DEV

  • V8: Update visbility error bar calculation using pi = his/N +/- sqrt(his_i)/N
  • Update normlization in g2 calculation uing 2D-savitzky golay (SG ) smooth

CHX Olog NoteBook

CHX Olog (https://logbook.nsls2.bnl.gov/11-ID/)

Setup

Import packages for I/O, visualization, and analysis.


In [1]:
from chxanalys.chx_packages import *
%matplotlib notebook
plt.rcParams.update({'figure.max_open_warning': 0})
plt.rcParams.update({ 'image.origin': 'lower'   })
plt.rcParams.update({ 'image.interpolation': 'none'   })
import pickle as cpk
from chxanalys.chx_xpcs_xsvs_jupyter_V1 import *


/opt/conda_envs/analysis/lib/python3.5/site-packages/filestore/retrieve.py:15: UserWarning: Do not import filestore.retrieve, import filestore.api instead
  warnings.warn("Do not import filestore.retrieve, "
/opt/conda_envs/analysis/lib/python3.5/site-packages/IPython/html.py:14: ShimWarning: The `IPython.html` package has been deprecated since IPython 4.0. You should import from `notebook` instead. `IPython.html.widgets` has moved to `ipywidgets`.
  "`IPython.html.widgets` has moved to `ipywidgets`.", ShimWarning)

In [2]:
Javascript( '''
        var nb = IPython.notebook;
        var kernel = IPython.notebook.kernel;
        var command = "NFP = '" + nb.base_url + nb.notebook_path + "'";        
        kernel.execute(command);
        ''' )


Out[2]:

In [3]:
#print( 'The current running pipeline is: %s' %NFP)

In [4]:
#%reset -f -s dhist in out array

Control Runs Here


In [5]:
#scat_geometry = 'saxs'  #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
scat_geometry = 'saxs'
qphi_analysis =  False
#scat_geometry = 'ang_saxs'  #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
#scat_geometry = 'gi_waxs'  #suport 'saxs', 'gi_saxs', 'ang_saxs' (for anisotropics saxs or flow-xpcs)
                           # gi_waxs define a simple box-shaped ROI 
#scat_geometry = 'gi_saxs'
force_compress = False #True   #force to compress data 
bin_frame = False   #generally make bin_frame as False
para_compress = True    #parallel compress
run_fit_form = False    #run fit form factor 
run_waterfall =  False   #run waterfall analysis
run_profile_plot = False  #run prolfile plot for gi-saxs
run_t_ROI_Inten = True  #run  ROI intensity as a function of time
run_get_mass_center = False  # Analysis for mass center of reflective beam center
run_invariant_analysis = False
run_one_time =  True  #run  one-time
#run_fit_g2 = True       #run  fit one-time, the default function is "stretched exponential"
fit_g2_func = 'stretched'
run_two_time =  True    #run  two-time
run_four_time = True #True #False   #run  four-time
run_xsvs=  False #False         #run visibility analysis
att_pdf_report = True    #attach the pdf report to CHX olog
qth_interest = 1 #the intested single qth             
use_sqnorm = True    #if True, use sq to normalize intensity
use_SG = False        #if True, use the Sawitzky-Golay filter for <I(pix)>
use_imgsum_norm= True  #if True use imgsum to normalize intensity for one-time calculatoin
pdf_version='_%s'%get_today_date()     #for pdf report name
run_dose =  True  #run dose_depend analysis

if scat_geometry == 'gi_saxs':run_xsvs= False;use_sqnorm=False
if scat_geometry == 'gi_waxs':use_sqnorm = False
if scat_geometry != 'saxs':qphi_analysis = False;scat_geometry_ = scat_geometry  
else:scat_geometry_ = ['','ang_'][qphi_analysis]+ scat_geometry   
if scat_geometry != 'gi_saxs':run_profile_plot = False

In [6]:
#%run ~/chxanalys_link/chxanalys/chx_generic_functions.py

In [7]:
scat_geometry


Out[7]:
'saxs'

In [8]:
taus=None;g2=None;tausb=None;g2b=None;g12b=None;taus4=None;g4=None;times_xsv=None;contrast_factorL=None; lag_steps = None

Make a directory for saving results


In [9]:
CYCLE= '2017_3'  #change clycle here

#CYCLE= '2017_2'  #change clycle here
path = '/XF11ID/analysis/%s/masks/'%CYCLE
username =  getpass.getuser()
#username =  'rmhanna'
username = 'hkoerner'
#username = 'rheadric'

data_dir0  = create_user_folder(CYCLE, username)
print( data_dir0 )


Results from this analysis will be stashed in the directory /XF11ID/analysis/2017_3/hkoerner/Results/
/XF11ID/analysis/2017_3/hkoerner/Results/

Load ROI defined by "XPCS_Setup" Pipeline


In [10]:
# dynamic mask
fp = '/XF11ID/analysis/2017_3/masks/roi_mask_Nov17_Rings.pkl'



roi_mask,qval_dict = cpk.load( open(fp, 'rb' )  )  #for load the saved roi data
print(fp)

# q map file
if scat_geometry =='gi_saxs':
    # static mask
    fp = data_dir0 + 'June_2017_Sam3_Graphene_no1_C60_200C_roi_static.pkl'
    roi_masks,qval_dicts = cpk.load( open(fp, 'rb' )  )  #for load the saved roi data
    print(fp)
    fp = data_dir0 + 'June_2017_Sam3_Graphene_no1_C60_200C_gisaxs_qmap.pkl'
    print(fp)
    qr_map, qz_map, ticks, Qrs, Qzs,  Qr, Qz, inc_x0,refl_x0, refl_y0 = cpk.load( open(fp, 'rb' )  )


/XF11ID/analysis/2017_3/masks/roi_mask_Nov17_Rings.pkl

In [11]:
#%run chxanalys_link/chxanalys/chx_generic_functions.py

Load Metadata & Image Data

Change this line to give a uid


In [12]:
uid = '76f314' # (scan num: 9401) (Measurement: 750Hz 1k frames mbs =.05x.4 CoralPor )   
uid = 'ec4b0c' # (scan num: 9402) (Measurement: 750Hz 1k frames mbs =.1x.4 CoralPor )
uid = '6d0761' #(scan num: 9403 (Measurement: 750Hz 5k frames 1000A        "
uid = 'c298d2' #(scan num: 9404 (Measurement: 100Hz 5k T=.2 1000A      
uid = 'f03425' #(scan num: 9405 (Measurement: 10Hz 5k T=.2 1000A 
uid = 'b3ea84' #(scan num: 9406 (Measurement: 10Hz 5k T=.036 1000A        "
uid = 'be6e4c' #(scan num: 9407 (Measurement: 10Hz 5k T=.036 1000E        "

In [13]:
get_last_uids( -1 )


Out[13]:
"   uid = '98811a' #(scan num: 10712 (Measurement: Beam profile smp_x (H) 0.2 x 0.2         "

In [14]:
sud = get_sid_filenames(db[uid])
print ('scan_id, full-uid, data path are:  %s--%s--%s'%(sud[0], sud[1], sud[2][0] ))
#start_time, stop_time = '2017-2-24  12:23:00', '2017-2-24  13:42:00' 
#sids, uids, fuids  = find_uids(start_time, stop_time)


scan_id, full-uid, data path are:  9407--be6e4c92-3af2-44a7-a6e9-0e09c145aa9c--/XF11ID/data/2017/11/17/7994774d-7d6e-4804-92eb_937

In [15]:
data_dir = os.path.join(data_dir0, '%s/'%uid)
os.makedirs(data_dir, exist_ok=True)
print('Results from this analysis will be stashed in the directory %s' % data_dir)
uidstr = 'uid=%s'%uid


Results from this analysis will be stashed in the directory /XF11ID/analysis/2017_3/hkoerner/Results/be6e4c/

Don't Change these lines below here

  • get metadata

In [39]:
def get_meta_data( uid,*argv,**kwargs ):
    '''
    Y.G. Dev Dec 8, 2016
    
    Get metadata from a uid
    Parameters:
        uid: the unique data acquisition id
        kwargs: overwrite the meta data, for example 
            get_meta_data( uid = uid, sample = 'test') --> will overwrtie the meta's sample to test
    return:
        meta data of the uid: a dictionay
        with keys:
            detector            
            suid: the simple given uid
            uid: full uid
            filename: the full path of the data
            start_time: the data acquisition starting time in a human readable manner
        And all the input metadata
        
            
    
    '''
    import time    
    md ={}
    md['detector'] = get_detector( db[uid ] )    
    md['suid'] = uid  #short uid
    md['filename'] = get_sid_filenames(db[uid])[2][0]
    #print( md )        
    ev, = get_events(db[uid], [md['detector']], fill= False) 
    dec =  list( ev['descriptor']['configuration'].keys() )[0]
    for k,v in ev['descriptor']['configuration'][dec]['data'].items():
        md[ k[len(dec)+1:] ]= v
        print(k)
    for k,v in ev['descriptor']['run_start'].items():
        if k!= 'plan_args':
            md[k]= v 
            print(k)
    md['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(md['time']))    
    md['stop_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime( ev['time']   ))  
    md['img_shape'] = ev['descriptor']['data_keys'][md['detector']]['shape'][:2][::-1]
    for k,v in kwargs.items():
        md[k] =v  
        #print(k)
    return md

In [42]:
md={}

In [ ]:


In [43]:
md = get_meta_data( uid )


eiger4m_single_photon_energy
eiger4m_single_beam_center_y
eiger4m_single_cam_num_images
eiger4m_single_det_distance
eiger4m_single_threshold_energy
eiger4m_single_beam_center_x
eiger4m_single_wavelength
eiger4m_single_cam_acquire_time
eiger4m_single_cam_acquire_period
scan_id
plan_type
shutter mode
sequence id
detectors
T_yoke
num_intervals
uid
sample
acquire period
owner
hints
run
number of images
time
feedback_y
plan_name
beamline_id
exposure time
user
T_sample
data path
Measurement
num_points
feedback_x
transmission

In [25]:
get_meta_data??

In [ ]:


In [44]:
md


Out[44]:
{'Measurement': '10Hz 5k T=.036 1000E',
 'T_sample': '16.591',
 'T_yoke': '16.591',
 'acquire period': '0.1',
 'beam_center_x': 1056.0,
 'beam_center_y': 1236.0,
 'beamline_id': 'CHX',
 'cam_acquire_period': 0.1,
 'cam_acquire_time': 0.09999000281095505,
 'cam_num_images': 5000,
 'data path': '/XF11ID/data/2017/11/17/',
 'det_distance': 10.083508845000003,
 'detector': 'eiger4m_single_image',
 'detectors': ['eiger4m_single'],
 'exposure time': '0.1',
 'feedback_x': 'on',
 'feedback_y': 'on',
 'filename': '/XF11ID/data/2017/11/17/7994774d-7d6e-4804-92eb_937',
 'hints': {'dimensions': [[['time'], 'primary']]},
 'img_shape': [2167, 2070],
 'num_intervals': 0,
 'num_points': 1,
 'number of images': '5000',
 'owner': 'xf11id',
 'photon_energy': 9653.0,
 'plan_name': 'count',
 'plan_type': 'generator',
 'run': '2017-3',
 'sample': '1000E',
 'scan_id': 9407,
 'sequence id': '937.0',
 'shutter mode': 'single',
 'start_time': '2017-11-17 14:03:38',
 'stop_time': '2017-11-17 14:12:07',
 'suid': 'be6e4c',
 'threshold_energy': 4826.5,
 'time': 1510945418.1920671,
 'transmission': 0.03621108237460572,
 'uid': 'be6e4c92-3af2-44a7-a6e9-0e09c145aa9c',
 'user': 'hkoerner',
 'wavelength': 1.2844109535217285}

In [ ]:


In [17]:
get_meta_data?

In [18]:
uid


Out[18]:
'be6e4c'

In [19]:
ev, = get_events(db[uid], [md['detector']], fill= False)
ev


Out[19]:
data
eiger4m_single_image a9e41607-e193-4e1a-b51a-e98b85fec8c0
descriptor
configuration
eiger4m_single
data
eiger4m_single_beam_center_x 1056.0
eiger4m_single_beam_center_y 1236.0
eiger4m_single_cam_acquire_period 0.1
eiger4m_single_cam_acquire_time 0.09999000281095505
eiger4m_single_cam_num_images 5000
eiger4m_single_det_distance 10.083508845000003
eiger4m_single_photon_energy 9653.0
eiger4m_single_threshold_energy 4826.5
eiger4m_single_wavelength 1.2844109535217285
data_keys
eiger4m_single_beam_center_x
dtype number
lower_ctrl_limit 0.0
precision 3
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:BeamX_RBV
units pixels
upper_ctrl_limit 0.0
eiger4m_single_beam_center_y
dtype number
lower_ctrl_limit 0.0
precision 3
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:BeamY_RBV
units pixels
upper_ctrl_limit 0.0
eiger4m_single_cam_acquire_period
dtype number
lower_ctrl_limit 0.0
precision 3
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:AcquirePeriod_RBV
units
upper_ctrl_limit 0.0
eiger4m_single_cam_acquire_time
dtype number
lower_ctrl_limit 0.0
precision 3
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:AcquireTime_RBV
units
upper_ctrl_limit 0.0
eiger4m_single_cam_num_images
dtype integer
lower_ctrl_limit 0
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:NumImages_RBV
units
upper_ctrl_limit 0
eiger4m_single_det_distance
dtype number
lower_ctrl_limit 0.0
precision 3
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:DetDist_RBV
units m
upper_ctrl_limit 0.0
eiger4m_single_photon_energy
dtype number
lower_ctrl_limit 0.0
precision 3
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:PhotonEnergy_RBV
units eV
upper_ctrl_limit 0.0
eiger4m_single_threshold_energy
dtype number
lower_ctrl_limit 0.0
precision 3
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:ThresholdEnergy_RBV
units eV
upper_ctrl_limit 0.0
eiger4m_single_wavelength
dtype number
lower_ctrl_limit 0.0
precision 4
shape []
source PV:XF:11IDB-ES{Det:Eig4M}cam1:Wavelength_RBV
units Angstro
upper_ctrl_limit 0.0
timestamps
eiger4m_single_beam_center_x 1510931464.482805
eiger4m_single_beam_center_y 1510930190.938312
eiger4m_single_cam_acquire_period 1510945411.030921
eiger4m_single_cam_acquire_time 1510945411.030902
eiger4m_single_cam_num_images 1510945411.191139
eiger4m_single_det_distance 1510929621.030332
eiger4m_single_photon_energy 1510929857.98564
eiger4m_single_threshold_energy 1510929857.985643
eiger4m_single_wavelength 1510929857.985623
data_keys
eiger4m_single_image
dtype array
external FILESTORE:
object_name eiger4m_single
shape [2070, 2167, 0]
source PV:XF:11IDB-ES{Det:Eig4M}
eiger4m_single_stats1_total
dtype number
lower_ctrl_limit 0.0
object_name eiger4m_single
precision 0
shape []
source PV:XF:11IDB-ES{Det:Eig4M}Stats1:Total_RBV
units
upper_ctrl_limit 0.0
eiger4m_single_stats2_total
dtype number
lower_ctrl_limit 0.0
object_name eiger4m_single
precision 0
shape []
source PV:XF:11IDB-ES{Det:Eig4M}Stats2:Total_RBV
units
upper_ctrl_limit 0.0
eiger4m_single_stats3_total
dtype number
lower_ctrl_limit 0.0
object_name eiger4m_single
precision 0
shape []
source PV:XF:11IDB-ES{Det:Eig4M}Stats3:Total_RBV
units
upper_ctrl_limit 0.0
eiger4m_single_stats4_total
dtype number
lower_ctrl_limit 0.0
object_name eiger4m_single
precision 0
shape []
source PV:XF:11IDB-ES{Det:Eig4M}Stats4:Total_RBV
units
upper_ctrl_limit 0.0
eiger4m_single_stats5_total
dtype number
lower_ctrl_limit 0.0
object_name eiger4m_single
precision 0
shape []
source PV:XF:11IDB-ES{Det:Eig4M}Stats5:Total_RBV
units
upper_ctrl_limit 0.0
hints
eiger4m_single
fields ['eiger4m_single_stats1_total']
name primary
object_keys
eiger4m_single ['eiger4m_single_image', 'eiger4m_single_stats1_total', 'eiger4m_single_stats2_total', 'eiger4m_single_stats3_total', 'eiger4m_single_stats4_total', 'eiger4m_single_stats5_total']
run_start
acquire period 0.1
beamline_id CHX
data path /XF11ID/data/2017/11/17/
detectors ['eiger4m_single']
exposure time 0.1
feedback_x on
feedback_y on
hints
dimensions [[['time'], 'primary']]
Measurement 10Hz 5k T=.036 1000E
num_intervals 0
num_points 1
number of images 5000
owner xf11id
plan_args
detectors ["EigerSingleTrigger(prefix='XF:11IDB-ES{Det:Eig4M}', name='eiger4m_single', read_attrs=['file', 'stats1', 'stats2', 'stats3', 'stats4', 'stats5'], configuration_attrs=['beam_center_x', 'beam_center_y', 'wavelength', 'det_distance', 'cam', 'threshold_energy', 'photon_energy'])"]
num 1
plan_name count
plan_type generator
run 2017-3
sample 1000E
scan_id 9407
sequence id 937.0
shutter mode single
T_sample 16.591
T_yoke 16.591
time 25 days ago (2017-11-17T14:03:38.192067)
transmission 0.03621108237460572
uid be6e4c92-3af2-44a7-a6e9-0e09c145aa9c
user hkoerner
time 25 days ago (2017-11-17T14:12:07.221699)
uid 88152c62-9c97-4bd9-bc82-9bb1911b10ce
filled
eiger4m_single_image False
seq_num 1
time 25 days ago (2017-11-17T14:12:07.235499)
timestamps
eiger4m_single_image 1510945418.20075
uid 4d170cc6-dae7-428e-a5fb-8184906ea012

In [ ]:
get_meta_data??

In [ ]:
ev['descriptor']['configuration']['eiger4m_single']['data']

In [ ]:
print(db[uid].stop)

In [ ]:
uid

In [ ]:
md
  • get data

In [21]:
imgs = load_data( uid, md['detector'], reverse= True  )
md.update( imgs.md );Nimg = len(imgs);
#if 'number of images'  not in list(md.keys()):
md['number of images']  = Nimg
pixel_mask =  1- np.int_( np.array( imgs.md['pixel_mask'], dtype= bool)  )
print( 'The data are: %s' %imgs )

md['acquire period' ] = md['cam_acquire_period']
md['exposure time'] =  md['cam_acquire_time']


The data are: Sliced and/or processed EigerImages2. Original repr:
    <Frames>
    Length: 5000 frames
    Frame Shape: 2167 x 2070
    Pixel Datatype: uint32

In [ ]:


In [ ]:
print_dict( md,  ['suid', 'number of images', 'uid', 'scan_id', 'start_time', 'stop_time', 'sample', 'Measurement',
                  'acquire period', 'exposure time',  
         'det_distance', 'beam_center_x', 'beam_center_y', ] )

Overwrite Some Metadata if Wrong Input

Define incident beam center (also define reflection beam center for gisaxs)


In [ ]:
if scat_geometry =='gi_saxs':
    inc_x0 =  md['beam_center_x'] 
    inc_y0 =  imgs[0].shape[0] - md['beam_center_y'] 
    
    refl_x0 =   1541  #md['beam_center_x']  
    refl_y0 =   960  #imgs[0].shape[0] -  1758   
    print( "inc_x0, inc_y0, ref_x0,ref_y0 are: %s %s %s %s."%(inc_x0, inc_y0, refl_x0, refl_y0) )
else:
    inc_x0 =  imgs[0].shape[0] - md['beam_center_y']   
    inc_y0=   md['beam_center_x']

In [ ]:
dpix, lambda_, Ldet,  exposuretime, timeperframe, center = check_lost_metadata(
    md, Nimg, inc_x0 = inc_x0, inc_y0=   inc_y0, pixelsize = 7.5*10*(-5) )
if scat_geometry =='gi_saxs':center=center[::-1]
setup_pargs=dict(uid=uidstr, dpix= dpix, Ldet=Ldet, lambda_= lambda_, exposuretime=exposuretime,
        timeperframe=timeperframe, center=center, path= data_dir)
print_dict( setup_pargs )

In [ ]:
setup_pargs

Apply Mask

  • load and plot mask if exist
  • otherwise create a mask using Mask pipeline
  • Reverse the mask in y-direction due to the coordination difference between python and Eiger software
  • Reverse images in y-direction
  • Apply the mask

Change the blow line to give mask filename


In [ ]:
if scat_geometry == 'gi_saxs':
    mask_path = '/XF11ID/analysis/2017_2/masks/'    
    mask_name =  'Jun4_2_GiSAXS.npy'   

    
elif scat_geometry == 'saxs':
    mask_path = '/XF11ID/analysis/2017_3/masks/'
    mask_name = 'Nov17_SAXS.npy'
    
    #mask_path = '/XF11ID/analysis/2017_2/masks/'
    #mask_name = 'Jul26_SAXS.npy'

In [ ]:
mask = load_mask(mask_path, mask_name, plot_ =  False, image_name = uidstr + '_mask', reverse= True ) 
mask *= pixel_mask
show_img(mask,image_name = uidstr + '_mask', save=True, path=data_dir, aspect=1, center=center[::-1])
mask_load=mask.copy()
imgsa = apply_mask( imgs, mask )

Check several frames average intensity


In [ ]:
img_choice_N = 3
img_samp_index = random.sample( range(len(imgs)), img_choice_N) 
avg_img =  get_avg_img( imgsa, img_samp_index, plot_ = False, uid =uidstr)
if avg_img.max() == 0:
    print('There are no photons recorded for this uid: %s'%uid)
    print('The data analysis should be terminated! Please try another uid.')

In [ ]:
#show_img( imgsa[1000],  vmin=.1, vmax= 1e1, logs=True, aspect=1,
#         image_name= uidstr + '_img_avg',  save=True, path=data_dir,  cmap = cmap_albula )

In [ ]:
show_img( imgs[10],  vmin=.0, vmax= 1e1, logs=False, aspect=1, #save_format='tif',
         image_name= uidstr + '_img_avg',  save=True, path=data_dir, cmap=cmap_albula,center=center[::-1] )

Compress Data

  • Generate a compressed data with filename
  • Replace old mask with a new mask with removed hot pixels
  • Do average image
  • Do each image sum
  • Find badframe_list for where image sum above bad_pixel_threshold
  • Check shutter open frame to get good time series

In [ ]:
compress=True
photon_occ = len( np.where(avg_img)[0] ) / ( imgsa[0].size)
#compress =  photon_occ < .4  #if the photon ocupation < 0.5, do compress
print ("The non-zeros photon occupation is %s."%( photon_occ))
print("Will " + 'Always ' + ['NOT', 'DO'][compress]  + " apply compress process.")

In [ ]:
good_start = 5  #5  #make the good_start at least 0

In [ ]:
bin_frame =  False # True  #generally make bin_frame as False
if bin_frame:
    bin_frame_number=4
    acquisition_period = md['acquire period']
    timeperframe = acquisition_period * bin_frame_number
else:
    bin_frame_number =1

In [ ]:
import time
t0= time.time()
if bin_frame_number==1:
    filename = '/XF11ID/analysis/Compressed_Data' +'/uid_%s.cmp'%md['uid']
else:
    filename = '/XF11ID/analysis/Compressed_Data' +'/uid_%s_bined--%s.cmp'%(md['uid'],bin_frame_number) 
mask, avg_img, imgsum, bad_frame_list = compress_eigerdata(imgs, mask, md, filename, 
         force_compress= force_compress,  para_compress= para_compress,  bad_pixel_threshold = 1e14,
                        bins=bin_frame_number, num_sub= 100, num_max_para_process= 500, with_pickle=True  )
min_inten = 10    
good_start = max(good_start, np.where( np.array(imgsum) > min_inten )[0][0] )    
print ('The good_start frame number is: %s '%good_start)
FD = Multifile(filename, good_start, len(imgs)//bin_frame_number)
#FD = Multifile(filename, good_start, 100)
uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
print( uid_ )
plot1D( y = imgsum[ np.array( [i for i in np.arange(good_start, len(imgsum)) if i not in bad_frame_list])],
       title =uidstr + '_imgsum', xlabel='Frame', ylabel='Total_Intensity', legend='imgsum'   )
Nimg = Nimg/bin_frame_number

run_time(t0)

In [ ]:
show_img( avg_img,   vmin=.0001, vmax= 5e4, logs=True, aspect=1, #save_format='tif',
         image_name= uidstr + '_img_avg',  save=True, path=data_dir,  cmap = cmap_albula, center=center[::-1] )

Get bad frame list by a polynominal fit


In [ ]:
good_end= None # 2000  
if good_end is not None:
    FD = Multifile(filename, good_start, min( len(imgs)//bin_frame_number, good_end) )
    uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
    print( uid_ )

In [ ]:
re_define_good_start =False
if re_define_good_start:
    good_start = 10
    good_end = 19700
    FD = Multifile(filename, good_start, good_end) 
    uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
    print( FD.beg, FD.end)

In [ ]:
bad_frame_list =  get_bad_frame_list( imgsum, fit='both',  plot=True,polyfit_order = 30,                                      
                        scale= 3.5,  good_start = good_start, good_end=good_end, uid= uidstr, path=data_dir)

print( 'The bad frame list length is: %s'%len(bad_frame_list) )

In [ ]:

Creat new mask by masking the bad pixels and get new avg_img


In [ ]:
imgsum_y = imgsum[ np.array( [i for i in np.arange( len(imgsum)) if i not in bad_frame_list])]
imgsum_x = np.arange( len( imgsum_y))
save_lists(  [imgsum_x, imgsum_y], label=['Frame', 'Total_Intensity'],
           filename=uidstr + '_img_sum_t', path= data_dir  )

Plot time~ total intensity of each frame


In [ ]:
plot1D( y = imgsum_y, title = uidstr + '_img_sum_t', xlabel='Frame', c='b',
       ylabel='Total_Intensity', legend='imgsum', save=True, path=data_dir)

Static Analysis

SAXS Scattering Geometry


In [ ]:
if scat_geometry =='saxs':
    ## Get circular average| * Do plot and save q~iq
    hmask = create_hot_pixel_mask( avg_img, threshold = 1e2, center=center, center_radius= 100)
    mask = mask * hmask
    qp_saxs, iq_saxs, q_saxs = get_circular_average( avg_img, mask * hmask, pargs=setup_pargs  )
    plot_circular_average( qp_saxs, iq_saxs, q_saxs,  pargs=setup_pargs, 
                      xlim=[q_saxs.min(), q_saxs.max()*1.0], ylim = [iq_saxs.min(), iq_saxs.max()] )
#mask =np.array( mask * hmask, dtype=bool)

In [ ]:
#%run ~/chxanalys_link/chxanalys/chx_compress_analysis.py

In [ ]:
if scat_geometry =='saxs':    
    if run_fit_form:        
        form_res = fit_form_factor( q_saxs,iq_saxs,  guess_values={'radius': 2500, 'sigma':0.05, 
         'delta_rho':1E-10 },  fit_range=[0.0001, 0.015], fit_variables={'radius': T, 'sigma':T, 
         'delta_rho':T},  res_pargs=setup_pargs, xlim=[0.0001, 0.015])  
        
    qr = np.array( [qval_dict[k][0] for k in sorted( qval_dict.keys())] )
    print(len(qr))
    show_ROI_on_image( avg_img, roi_mask, center, label_on = False, rwidth = 840, alpha=.9,  
                 save=True, path=data_dir, uid=uidstr, vmin= 1e-3,
                 vmax= 1e3, #np.max(avg_img),
                 aspect=1,
                 show_roi_edge=True,
                 show_ang_cor = True) 
    plot_qIq_with_ROI( q_saxs, iq_saxs, np.unique(qr), logs=True, uid=uidstr, xlim=[0.0001,0.08],
                  ylim = [iq_saxs.min(), iq_saxs.max()*2],  save=True, path=data_dir)

Time Depedent I(q) Analysis


In [ ]:
if scat_geometry =='saxs':
    Nimg = FD.end - FD.beg 
    time_edge = create_time_slice( Nimg, slice_num= 4, slice_width= 1, edges = None )
    time_edge =  np.array( time_edge ) + good_start
    #print( time_edge )    
    qpt, iqst, qt = get_t_iqc( FD, time_edge, mask, pargs=setup_pargs, nx=1500, show_progress= False )
    plot_t_iqc( qt, iqst, time_edge, pargs=setup_pargs, xlim=[qt.min(), qt.max()],
           ylim = [iqst.min(), iqst.max()], save=True )

In [ ]:
if run_invariant_analysis:
    if scat_geometry =='saxs':
        invariant = get_iq_invariant( qt, iqst )
        time_stamp = time_edge[:,0] * timeperframe

    if scat_geometry =='saxs':
        plot_q2_iq( qt, iqst, time_stamp,pargs=setup_pargs,ylim=[ -0.001, 0.01] , 
                   xlim=[0.007,0.2],legend_size= 6  )

    if scat_geometry =='saxs':
        plot_time_iq_invariant( time_stamp, invariant, pargs=setup_pargs,  )

    if False:
        iq_int = np.zeros( len(iqst) )
        fig, ax = plt.subplots()
        q = qt
        for i in range(iqst.shape[0]):
            yi = iqst[i] * q**2
            iq_int[i] = yi.sum()
            time_labeli = 'time_%s s'%( round(  time_edge[i][0] * timeperframe, 3) )
            plot1D( x = q, y = yi, legend= time_labeli, xlabel='Q (A-1)', ylabel='I(q)*Q^2', title='I(q)*Q^2 ~ time',
                   m=markers[i], c = colors[i], ax=ax, ylim=[ -0.001, 0.01] , xlim=[0.007,0.2],
                  legend_size=4)

        #print( iq_int )

In [ ]:


In [ ]:

GiSAXS Scattering Geometry


In [ ]:
if scat_geometry =='gi_saxs':    
    plot_qzr_map(  qr_map, qz_map, inc_x0, ticks = ticks, data= avg_img, uid= uidstr, path = data_dir   )

Static Analysis for gisaxs


In [ ]:
if scat_geometry =='gi_saxs':    
    #roi_masks, qval_dicts = get_gisaxs_roi( Qrs, Qzs, qr_map, qz_map, mask= mask )
    show_qzr_roi( avg_img, roi_masks, inc_x0, ticks[:4], alpha=0.5, save=True, path=data_dir, uid=uidstr )

In [ ]:
if  scat_geometry =='gi_saxs':    
    Nimg = FD.end - FD.beg 
    time_edge = create_time_slice( N= Nimg, slice_num= 2, slice_width= 2, edges = None )
    time_edge =  np.array( time_edge ) + good_start
    print( time_edge )    
    qrt_pds = get_t_qrc( FD, time_edge, Qrs, Qzs, qr_map, qz_map, mask=mask, path=data_dir, uid = uidstr )    
    plot_qrt_pds( qrt_pds, time_edge, qz_index = 0, uid = uidstr, path =  data_dir )

Make a Profile Plot


In [ ]:
if  scat_geometry =='gi_saxs':
    if run_profile_plot:
        xcorners= [ 1100, 1250, 1250, 1100 ]
        ycorners= [ 850, 850, 950, 950 ]   
        waterfall_roi_size = [ xcorners[1] - xcorners[0],  ycorners[2] - ycorners[1]  ]
        waterfall_roi =  create_rectangle_mask(  avg_img, xcorners, ycorners   )
        #show_img( waterfall_roi * avg_img,  aspect=1,vmin=.001, vmax=1, logs=True, )
        wat = cal_waterfallc( FD, waterfall_roi, qindex= 1, bin_waterfall=True,
                              waterfall_roi_size = waterfall_roi_size,save =True, path=data_dir, uid=uidstr)

In [ ]:
if  scat_geometry =='gi_saxs':
    if run_profile_plot:
        plot_waterfallc( wat, qindex=1, aspect=None, vmin=1, vmax= np.max( wat), uid=uidstr, save =True, 
                        path=data_dir, beg= FD.beg)

Dynamic Analysis for gi_saxs


In [ ]:
if scat_geometry =='gi_saxs':       
    show_qzr_roi( avg_img, roi_mask, inc_x0, ticks[:4], alpha=0.5, save=True, path=data_dir, uid=uidstr )        
    ## Get 1D Curve (Q||-intensity¶)
    qr_1d_pds = cal_1d_qr( avg_img, Qr, Qz, qr_map, qz_map, inc_x0= None, mask=mask, setup_pargs=setup_pargs )
    plot_qr_1d_with_ROI( qr_1d_pds, qr_center=np.unique( np.array(list( qval_dict.values() ) )[:,0] ),
                    loglog=False, save=True, uid=uidstr, path = data_dir)

GiWAXS Scattering Geometry


In [ ]:
if scat_geometry =='gi_waxs':
    badpixel = np.where( avg_img[:600,:] >=300 )
    roi_mask[badpixel] = 0
    show_ROI_on_image( avg_img, roi_mask, label_on = True,  alpha=.5,
                 save=True, path=data_dir, uid=uidstr, vmin=0.1, vmax=5)
  • Extract the labeled array

In [ ]:
qind, pixelist = roi.extract_label_indices(roi_mask)
noqs = len(np.unique(qind))
  • Number of pixels in each q box

In [ ]:
nopr = np.bincount(qind, minlength=(noqs+1))[1:]
nopr

Check one ROI intensity


In [ ]:
roi_inten = check_ROI_intensity( avg_img, roi_mask, ring_number= 2, uid =uidstr ) #roi starting from 1

Do a waterfall analysis


In [ ]:
#run_waterfall = False

In [ ]:
qth_interest = 5 #the second ring. #qth_interest starting from 1
if scat_geometry =='saxs' or scat_geometry =='gi_waxs':
    if run_waterfall:    
        wat = cal_waterfallc( FD, roi_mask, qindex= qth_interest, save =True, path=data_dir, uid=uidstr)
        plot_waterfallc( wat, qth_interest, aspect= None, vmin=1e-1, vmax= wat.max(), uid=uidstr, save =True, 
                        path=data_dir, beg= FD.beg, cmap = cmap_vge )

In [ ]:
ring_avg = None    
if run_t_ROI_Inten:
    times_roi, mean_int_sets = cal_each_ring_mean_intensityc(FD, roi_mask, timeperframe = None, multi_cor=True  ) 
    plot_each_ring_mean_intensityc( times_roi, mean_int_sets,  uid = uidstr, save=True, path=data_dir )
    roi_avg = np.average( mean_int_sets, axis=0)

Analysis for mass center of reflective beam center


In [ ]:
if run_get_mass_center:
    cx, cy = get_mass_center_one_roi(FD, roi_mask, roi_ind=25)

In [ ]:
if run_get_mass_center:
    fig,ax=plt.subplots(2)
    plot1D( cx, m='o', c='b',ax=ax[0], legend='mass center-refl_X', 
           ylim=[940, 960], ylabel='posX (pixel)')
    plot1D( cy, m='s', c='r',ax=ax[1], legend='mass center-refl_Y', 
           ylim=[1540, 1544], xlabel='frames',ylabel='posY (pixel)')

In [ ]:


In [ ]:

One time Correlation

Note : Enter the number of buffers for Muliti tau one time correlation number of buffers has to be even. More details in https://github.com/scikit-beam/scikit-beam/blob/master/skbeam/core/correlation.py

if define another good_series


In [ ]:
define_good_series = False
#define_good_series = True

if define_good_series:
    good_start = 200
    FD = Multifile(filename, beg = good_start, end = 800) #end=1000)
    uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
    print( uid_ )

In [ ]:
#%run /home/yuzhang/chxanalys_link/chxanalys/chx_generic_functions.py

In [ ]:
if use_sqnorm:#for transmision SAXS
    norm = get_pixelist_interp_iq( qp_saxs, iq_saxs, roi_mask, center)
    print('Using circular average in the normalization of G2 for SAXS scattering.')
elif use_SG:#for Gi-SAXS or WAXS
    avg_imgf = sgolay2d( avg_img, window_size= 11, order= 5) * mask
    norm=np.ravel(avg_imgf)[pixelist]    
    print('Using smoothed image by SavitzkyGolay filter in the normalization of G2.')    
else:     
    norm= None
    print('Using simple (average) normalization of G2.')      

if use_imgsum_norm:
    imgsum_ = imgsum
else:
    imgsum_ = None    
import time

In [ ]:
#show_img( FD.rdframe(10), label_array=roi_mask, aspect=1, center=center )

In [ ]:
if run_one_time: 
    t0 = time.time()    
    g2, lag_steps  = cal_g2p( FD,  roi_mask, bad_frame_list,good_start, num_buf = 8, num_lev= None,
                            imgsum= imgsum_, norm=norm )
    run_time(t0)

In [ ]:
lag_steps = lag_steps[:g2.shape[0]]

In [ ]:
if run_one_time:
    
    taus = lag_steps * timeperframe    
    try:
        g2_pds = save_g2_general( g2, taus=taus,qr= np.array( list( qval_dict.values() ) )[:,0],
                                            qz = np.array( list( qval_dict.values() ) )[:,1],
                             uid=uid_+'_g2.csv', path= data_dir, return_res=True )
    except:
        g2_pds = save_g2_general( g2, taus=taus,qr= np.array( list( qval_dict.values() ) )[:,0],                                             
                             uid=uid_+'_g2.csv', path= data_dir, return_res=True )

In [ ]:
#g2.shape

Fit g2


In [ ]:
if run_one_time:
    g2_fit_result, taus_fit, g2_fit = get_g2_fit_general( g2,  taus, 
                function = fit_g2_func,  vlim=[0.95, 1.05], fit_range= None,  
            fit_variables={'baseline':True, 'beta': True, 'alpha':True,'relaxation_rate':True,},                                  
            guess_values={'baseline':1.0,'beta': 0.1,'alpha':1.0,'relaxation_rate':0.0100,},
            guess_limits = dict( baseline =[1, 1.8], alpha=[0, 2],
                        beta = [0, 1], relaxation_rate= [0.00001, 5000]) ,) 
    g2_fit_paras = save_g2_fit_para_tocsv(g2_fit_result,  filename= uid_  +'_g2_fit_paras.csv', path=data_dir )

In [ ]:
print(scat_geometry_)

In [ ]:
fit_g2_func

In [ ]:
if run_one_time:
    plot_g2_general( g2_dict={1:g2, 2:g2_fit}, taus_dict={1:taus, 2:taus_fit}, vlim=[0.95, 1.05],
                qval_dict = qval_dict, fit_res= g2_fit_result,  geometry= scat_geometry_,filename= uid_+'_g2', 
        path= data_dir, function= fit_g2_func,  ylabel='g2', append_name=  '_fit')

In [ ]:
if run_one_time:
    if False:
        fs, fe = 0, 9
        fs,fe=0, 12
        qval_dict_ = {k:qval_dict[k] for k in list(qval_dict.keys())[fs:fe]  }
        D0, qrate_fit_res = get_q_rate_fit_general(  qval_dict_, g2_fit_paras['relaxation_rate'][fs:fe], 
                                                   geometry=  scat_geometry_ )
        plot_q_rate_fit_general( qval_dict_, g2_fit_paras['relaxation_rate'][fs:fe],  qrate_fit_res, 
                                geometry= scat_geometry_,uid=uid_  , path= data_dir )
    else:
        D0, qrate_fit_res = get_q_rate_fit_general(  qval_dict, g2_fit_paras['relaxation_rate'],
                                    fit_range=[0, 26],   geometry= scat_geometry_ )    
        plot_q_rate_fit_general( qval_dict, g2_fit_paras['relaxation_rate'],  qrate_fit_res,   
                            geometry=  scat_geometry_,uid=uid_  ,
                                show_fit=False, path= data_dir, plot_all_range=False)

In [ ]:
#plot1D( x= qr, y=g2_fit_paras['beta'], ls='-', m = 'o', c='b', ylabel=r'$\beta$', xlabel=r'$Q( \AA^{-1} ) $' )

For two-time


In [ ]:
define_good_series = False
#define_good_series = True
if define_good_series:
    good_start = 5
    FD = Multifile(filename, beg = good_start, end = 1000)
    uid_ = uidstr + '_fra_%s_%s'%(FD.beg, FD.end)
    print( uid_ )

In [ ]:
#%run chxanalys_link/chxanalys/chx_generic_functions.py

In [ ]:
data_pixel = None
if run_two_time:    
    data_pixel =   Get_Pixel_Arrayc( FD, pixelist,  norm= norm ).get_data()

In [ ]:
import time
t0=time.time()
g12b=None
if run_two_time:     
    g12b = auto_two_Arrayc(  data_pixel,  roi_mask, index = None   )
    if run_dose:
        np.save( data_dir + 'uid=%s_g12b'%uid, g12b)
run_time( t0 )

In [ ]:
#%run chxanalys_link/chxanalys/Two_Time_Correlation_Function.py

In [ ]:
if run_two_time:
    show_C12(g12b, q_ind=3, qlabel=qval_dict,N1= FD.beg,logs=False, N2=min( FD.end,10000), vmin= 1.01, vmax=1.12, 
             timeperframe=timeperframe,save=True, path= data_dir, uid = uid_ ,cmap=cmap_albula)

In [ ]:
multi_tau_steps = True
if run_two_time:
    if lag_steps is None:
        num_bufs=8
        noframes = FD.end - FD.beg
        num_levels = int(np.log( noframes/(num_bufs-1))/np.log(2) +1) +1
        tot_channels, lag_steps, dict_lag = multi_tau_lags(num_levels, num_bufs)
        max_taus= lag_steps.max()
        
    #max_taus= lag_steps.max()  
    max_taus = Nimg    
    t0=time.time()
    #tausb = np.arange( g2b.shape[0])[:max_taus] *timeperframe
    if multi_tau_steps:
        lag_steps_ = lag_steps[   lag_steps <= g12b.shape[0] ]
        g2b = get_one_time_from_two_time(g12b)[lag_steps_]
        tausb = lag_steps_ *timeperframe
    else:
        tausb = (np.arange( g12b.shape[0]) *timeperframe)[:-200]
        g2b = (get_one_time_from_two_time(g12b))[:-200]
    run_time(t0)
         
    g2b_pds = save_g2_general( g2b, taus=tausb, qr= np.array( list( qval_dict.values() ) )[:,0],
                              qz=None, uid=uid_ +'_g2b.csv', path= data_dir, return_res=True )

In [ ]:
if run_two_time:    
    g2b_fit_result, tausb_fit, g2b_fit = get_g2_fit_general( g2b,  tausb, 
                function = fit_g2_func,  vlim=[0.95, 1.05], fit_range= None,  
            fit_variables={'baseline':False, 'beta': True, 'alpha':False,'relaxation_rate':True},                                  
            guess_values={'baseline':1.0,'beta': 0.15,'alpha':1.0,'relaxation_rate':1,},
            guess_limits = dict( baseline =[1, 1.8], alpha=[0, 2],
                        beta = [0, 1], relaxation_rate= [0.000001, 5000]) ) 
    g2b_fit_paras = save_g2_fit_para_tocsv(g2b_fit_result,  filename= uid_  +'_g2b_fit_paras.csv', path=data_dir )

In [ ]:
#plot1D( x = tausb[1:], y =g2b[1:,0], ylim=[0.95, 1.46], xlim = [0.0001, 10], m='', c='r', ls = '-',
#       logx=True, title='one_time_corelation', xlabel = r"$\tau $ $(s)$",    )

In [ ]:
if run_two_time:
    plot_g2_general( g2_dict={1:g2b, 2:g2b_fit}, taus_dict={1:tausb, 2:tausb_fit}, vlim=[0.95, 1.05],
                qval_dict=qval_dict, fit_res= g2b_fit_result,  geometry=scat_geometry_,filename=uid_+'_g2', 
                    path= data_dir, function= fit_g2_func,  ylabel='g2', append_name=  '_b_fit')

In [ ]:
if run_two_time:    
    if False:
        fs, fe = 0,9
        fs, fe = 0,12
        qval_dict_ = {k:qval_dict[k] for k in list(qval_dict.keys())[fs:fe]  }
        D0b, qrate_fit_resb = get_q_rate_fit_general(  qval_dict_, g2b_fit_paras['relaxation_rate'][fs:fe], geometry= scat_geometry_ )
        plot_q_rate_fit_general( qval_dict_, g2b_fit_paras['relaxation_rate'][fs:fe],  qrate_fit_resb, 
                            geometry= scat_geometry_,uid=uid_ +'_two_time' , path= data_dir )
    else:
    
        D0b, qrate_fit_resb = get_q_rate_fit_general(  qval_dict, g2b_fit_paras['relaxation_rate'],
                                        fit_range=[0, 10],  geometry= scat_geometry_ )
        plot_q_rate_fit_general( qval_dict, g2b_fit_paras['relaxation_rate'],  qrate_fit_resb,   
                            geometry= scat_geometry_,uid=uid_ +'_two_time', show_fit=False,path= data_dir, plot_all_range= True )

In [ ]:
if run_two_time and run_one_time:
    plot_g2_general( g2_dict={1:g2, 2:g2b}, taus_dict={1:taus, 2:tausb},vlim=[0.99, 1.007],
                qval_dict=qval_dict, g2_labels=['from_one_time', 'from_two_time'],
            geometry=scat_geometry_,filename=uid_+'_g2_two_g2', path= data_dir, ylabel='g2', )

Run Dose dependent analysis


In [ ]:
if run_dose:
    get_two_time_mulit_uids( [uid], roi_mask,  norm= norm,  bin_frame_number=1, 
                        path= data_dir0, force_generate=False )

In [ ]:
try:
    print( md['transmission'] )
except:
    md['transmission'] =1

In [ ]:
exposuretime

In [ ]:
if run_dose:
    N = len(imgs)
    print(N)
    #exposure_dose = md['transmission'] * exposuretime* np.int_([  N/32, N/16, N/8, N/4 ,N/2, 3*N/4, N*0.99 ])
    exposure_dose = md['transmission'] * exposuretime* np.int_([   N/8, N/4 ,N/2, 3*N/4, N*0.99 ])
    
    print( exposure_dose )

In [ ]:
if run_dose:
    taus_uids, g2_uids = get_series_one_time_mulit_uids( [ uid ],  qval_dict, good_start=good_start,  
                    path= data_dir0, exposure_dose = exposure_dose,  num_bufs =8, save_g2= False,
                                                   dead_time = 0, trans = [ md['transmission'] ] )

In [ ]:


In [ ]:
if run_dose:    
    plot_dose_g2( taus_uids, g2_uids, ylim=[0.98, 1.2], vshift= 0.00,
                 qval_dict = qval_dict, fit_res= None,  geometry= scat_geometry_,
                 filename= '%s_dose_analysis'%uid_, 
                path= data_dir, function= None,  ylabel='g2_Dose', g2_labels= None, append_name=  '' )

In [ ]:


In [ ]:
if run_dose:
    qth_interest = 2
    plot_dose_g2( taus_uids, g2_uids, qth_interest= qth_interest, ylim=[0.98, 1.25], vshift= 0.00,
                 qval_dict = qval_dict, fit_res= None,  geometry= scat_geometry_,
                 filename= '%s_dose_analysis'%uidstr, 
                path= data_dir, function= None,  ylabel='g2_Dose', g2_labels= None, append_name=  '' )

Four Time Correlation


In [ ]:
if run_four_time:
    t0=time.time()
    g4 = get_four_time_from_two_time(g12b, g2=g2b)[:max_taus]
    run_time(t0)

In [ ]:
if run_four_time:
    taus4 = np.arange( g4.shape[0])*timeperframe        
    g4_pds = save_g2_general( g4, taus=taus4, qr=np.array( list( qval_dict.values() ) )[:,0],
                             qz=None, uid=uid_ +'_g4.csv', path= data_dir, return_res=True )

In [ ]:
if run_four_time:
    plot_g2_general( g2_dict={1:g4}, taus_dict={1:taus4},vlim=[0.95, 1.05], qval_dict=qval_dict, fit_res= None, 
                geometry=scat_geometry_,filename=uid_+'_g4',path= data_dir,   ylabel='g4')

Speckle Visiblity


In [ ]:
#run_xsvs =True

In [ ]:
if run_xsvs:    
    max_cts = get_max_countc(FD, roi_mask )    
    #max_cts = 15 #for eiger 500 K
    qind, pixelist = roi.extract_label_indices(   roi_mask  )
    noqs = len( np.unique(qind) )
    nopr = np.bincount(qind, minlength=(noqs+1))[1:]
    #time_steps = np.array( utils.geometric_series(2,   len(imgs)   ) )
    time_steps = [0,1]  #only run the first two levels
    num_times = len(time_steps)    
    times_xsvs = exposuretime + (2**(  np.arange( len(time_steps) ) ) -1 ) * timeperframe   
    print( 'The max counts are: %s'%max_cts )

Do historam


In [ ]:
if run_xsvs:
    if roi_avg is  None:
        times_roi, mean_int_sets = cal_each_ring_mean_intensityc(FD, roi_mask, timeperframe = None,  ) 
        roi_avg = np.average( mean_int_sets, axis=0)
    
    t0=time.time()
    spec_bins, spec_his, spec_std, spec_sum  =  xsvsp( FD, np.int_(roi_mask), norm=None,
                max_cts=int(max_cts+2),  bad_images=bad_frame_list, only_two_levels=True )    
    spec_kmean =  np.array(  [roi_avg * 2**j for j in  range( spec_his.shape[0] )] )
    run_time(t0)
    spec_pds =  save_bin_his_std( spec_bins, spec_his, spec_std, filename=uid_+'_spec_res.csv', path=data_dir )

Do historam fit by negtive binominal function with maximum likehood method


In [ ]:
if run_xsvs:    
    ML_val, KL_val,K_ = get_xsvs_fit(  spec_his, spec_sum, spec_kmean, 
                        spec_std, max_bins=2, fit_range=[1,60], varyK= False  )
    #print( 'The observed average photon counts are: %s'%np.round(K_mean,4))
    #print( 'The fitted average photon counts are: %s'%np.round(K_,4)) 
    print( 'The difference sum of average photon counts between fit and data are: %s'%np.round( 
            abs(np.sum( spec_kmean[0,:] - K_ )),4))
    print( '#'*30)
    qth=   0 
    print( 'The fitted M for Qth= %s are: %s'%(qth, ML_val[qth]) )
    print( K_[qth])
    print( '#'*30)

Plot fit results


In [ ]:


In [ ]:
if run_xsvs:   
    qr = [qval_dict[k][0] for k in list(qval_dict.keys()) ]
    plot_xsvs_fit(  spec_his, ML_val, KL_val, K_mean = spec_kmean, spec_std=spec_std,
                  xlim = [0,10], vlim =[.9, 1.1],
        uid=uid_, qth= qth_interest, logy= True, times= times_xsvs, q_ring_center=qr, path=data_dir)
    
    plot_xsvs_fit(  spec_his, ML_val, KL_val, K_mean = spec_kmean, spec_std = spec_std,
                  xlim = [0,15], vlim =[.9, 1.1],
        uid=uid_, qth= None, logy= True, times= times_xsvs, q_ring_center=qr, path=data_dir )

Get contrast


In [ ]:
if run_xsvs:
    contrast_factorL = get_contrast( ML_val)
    spec_km_pds = save_KM(  spec_kmean, KL_val, ML_val, qs=qr, level_time=times_xsvs, uid=uid_, path = data_dir )
    #spec_km_pds

Plot contrast with g2 restuls


In [ ]:
if run_xsvs:    
    plot_g2_contrast( contrast_factorL, g2b, times_xsvs, tausb, qr, 
                     vlim=[0.8,1.2], qth = qth_interest, uid=uid_,path = data_dir, legend_size=14)

    plot_g2_contrast( contrast_factorL, g2b, times_xsvs, tausb, qr, 
                     vlim=[0.8,1.2], qth = None, uid=uid_,path = data_dir, legend_size=4)

In [ ]:
#from chxanalys.chx_libs import cmap_vge, cmap_albula, Javascript

Export Results to a HDF5 File


In [ ]:


In [ ]:
md['mask_file']= mask_path + mask_name
md['roi_mask_file']= fp
md['mask'] = mask
md['NOTEBOOK_FULL_PATH'] =  data_dir + get_current_pipeline_fullpath(NFP).split('/')[-1]
md['good_start'] = good_start
md['bad_frame_list'] = bad_frame_list
md['avg_img'] = avg_img
md['roi_mask'] = roi_mask
md['setup_pargs'] = setup_pargs
if scat_geometry == 'gi_saxs':        
    md['Qr'] = Qr
    md['Qz'] = Qz
    md['qval_dict'] = qval_dict
    md['beam_center_x'] =  inc_x0
    md['beam_center_y']=   inc_y0
    md['beam_refl_center_x'] = refl_x0
    md['beam_refl_center_y'] = refl_y0


elif scat_geometry == 'gi_waxs':
    md['beam_center_x'] =  center[1]
    md['beam_center_y']=  center[0]
else:
    md['qr']= qr
    #md['qr_edge'] = qr_edge
    md['qval_dict'] = qval_dict
    md['beam_center_x'] =  center[1]
    md['beam_center_y']=  center[0]            

md['beg'] = FD.beg
md['end'] = FD.end
md['qth_interest'] = qth_interest
md['metadata_file'] = data_dir + 'uid=%s_md.pkl'%uid
psave_obj(  md, data_dir + 'uid=%s_md.pkl'%uid ) #save the setup parameters
save_dict_csv( md,  data_dir + 'uid=%s_md.csv'%uid, 'w')

Exdt = {} 
if scat_geometry == 'gi_saxs':  
    for k,v in zip( ['md', 'roi_mask','qval_dict','avg_img','mask','pixel_mask', 'imgsum', 'bad_frame_list', 'qr_1d_pds'], 
                [md,    roi_mask, qval_dict, avg_img,mask,pixel_mask, imgsum, bad_frame_list, qr_1d_pds] ):
        Exdt[ k ] = v
elif scat_geometry == 'saxs': 
    for k,v in zip( ['md', 'q_saxs', 'iq_saxs','iqst','qt','roi_mask','qval_dict','avg_img','mask','pixel_mask', 'imgsum', 'bad_frame_list'], 
                [md, q_saxs, iq_saxs, iqst, qt,roi_mask, qval_dict, avg_img,mask,pixel_mask, imgsum, bad_frame_list] ):
        Exdt[ k ] = v
elif scat_geometry == 'gi_waxs': 
    for k,v in zip( ['md', 'roi_mask','qval_dict','avg_img','mask','pixel_mask', 'imgsum', 'bad_frame_list'], 
                [md,       roi_mask, qval_dict, avg_img,mask,pixel_mask, imgsum, bad_frame_list] ):
        Exdt[ k ] = v
        
if run_waterfall:Exdt['wat'] =  wat
if run_t_ROI_Inten:Exdt['times_roi'] = times_roi;Exdt['mean_int_sets']=mean_int_sets
if run_one_time:
    if run_invariant_analysis:
        for k,v in zip( ['taus','g2','g2_fit_paras', 'time_stamp','invariant'], [taus,g2,g2_fit_paras,time_stamp,invariant] ):Exdt[ k ] = v
    else:
        for k,v in zip( ['taus','g2','g2_fit_paras'  ], [taus,g2,g2_fit_paras ] ):Exdt[ k ] = v
            
if run_two_time:
    for k,v in zip( ['tausb','g2b','g2b_fit_paras', 'g12b'], [tausb,g2b,g2b_fit_paras,g12b] ):Exdt[ k ] = v
    #for k,v in zip( ['tausb','g2b','g2b_fit_paras', ], [tausb,g2b,g2b_fit_paras] ):Exdt[ k ] = v    
if run_dose:
    for k,v in zip( [ 'taus_uids', 'g2_uids' ], [taus_uids, g2_uids] ):Exdt[ k ] = v
if run_four_time:
    for k,v in zip( ['taus4','g4'], [taus4,g4] ):Exdt[ k ] = v
if run_xsvs:
    for k,v in zip( ['spec_kmean','spec_pds','times_xsvs','spec_km_pds','contrast_factorL'], 
                   [ spec_kmean,spec_pds,times_xsvs,spec_km_pds,contrast_factorL] ):Exdt[ k ] = v

In [ ]:
#%run chxanalys_link/chxanalys/Create_Report.py

In [ ]:
export_xpcs_results_to_h5( 'uid=%s_Isotropic_Res.h5'%md['uid'], data_dir, export_dict = Exdt )
#extract_dict = extract_xpcs_results_from_h5( filename = 'uid=%s_Res.h5'%md['uid'], import_dir = data_dir )

In [ ]:
#extract_dict = extract_xpcs_results_from_h5( filename = 'uid=%s_Res.h5'%md['uid'], import_dir = data_dir )

Creat PDF Report


In [ ]:
uid

In [ ]:
pdf_out_dir = os.path.join('/XF11ID/analysis/', CYCLE, username, 'Results/')

pdf_filename = "XPCS_Analysis_Report2_for_uid=%s%s.pdf"%(uid,pdf_version)
if run_xsvs:
    pdf_filename = "XPCS_XSVS_Analysis_Report_for_uid=%s%s.pdf"%(uid,pdf_version)

In [ ]:
%run /home/yuzhang/chxanalys_link/chxanalys/Create_Report.py

In [ ]:
#md['detector_distance'] = 4.8884902

In [ ]:
make_pdf_report( data_dir, uid, pdf_out_dir, pdf_filename, username, 
                    run_fit_form,run_one_time, run_two_time, run_four_time, run_xsvs, run_dose,
                report_type= scat_geometry, report_invariant= run_invariant_analysis,
               md = md )

Attach the PDF report to Olog


In [ ]:
#%run  /home/yuzhang/chxanalys_link/chxanalys/chx_olog.py

In [ ]:
if att_pdf_report:     
    os.environ['HTTPS_PROXY'] = 'https://proxy:8888'
    os.environ['no_proxy'] = 'cs.nsls2.local,localhost,127.0.0.1'
    update_olog_uid_with_file( uid[:6], text='Add XPCS Analysis PDF Report', 
                              filename=pdf_out_dir + pdf_filename, append_name='_r1' )

The End!


In [ ]:
uid

Save the current pipeline in Results folder


In [ ]:
save_current_pipeline( NFP, data_dir)

In [ ]:
get_current_pipeline_fullpath(NFP)

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: