In [1]:
#This file is use to check data integrity with pandas
#ipython notebook

In [2]:
import pandas as pd
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

In [3]:
df_eur_usd = pd.read_csv("price_EUR_USD_D1_merge.csv", header=0, index_col=0)

In [4]:
df_eur_usd.columns


Out[4]:
Index([u'Currency_pair', u'Prediction_action', u'Day Open', u'Day Close', u'Day High', u'Day Low', u'Day Average', u'Momentum_3day', u'Momentum_4day', u'Momentum_5day', u'Momentum_8day', u'Momentum_9day', u'Momentum_10day', u'Roc_3day', u'Roc_4day', u'Roc_5day', u'Roc_8day', u'Roc_9day', u'Roc_10day', u'Fast_k_3day', u'Fast_d_3day', u'Fast_k_4day', u'Fast_d_4day', u'Fast_k_5day', u'Fast_d_5day', u'Fast_k_8day', u'Fast_d_8day', u'Fast_k_9day', u'Fast_d_9day', u'Fast_k_10day', u'Fast_d_10day', u'PROC_12day', u'PROC_13day', u'PROC_14day', u'PROC_15day', u'Weighted_Close_Price', u'WILLIAM_A_D', u'ADOSC_1day', u'ADOSC_2day', u'ADOSC_3day', u'ADOSC_4day', u'ADOSC_5day', u'EMA_12Day', u'EMA_26Day', u'MACD', u'CCI', u'BOLLINGER_BANDS_LOW', u'BOLLINGER_BANDS_HIGH', u'HEIKIN_ASHI_XCLOSE', u'HEIKIN_ASHI_XOPEN', u'HEIKIN_ASHI_XHIGH', u'HEIKIN_ASHI_XLOW', u'2DAY_HIGH', u'2DAY_LOW', u'1DAY_HIGH_LOW_AVG', u'2DAY_HIGH_LOW_AVG', u'High_slope_3day', u'High_slope_4day', u'High_slope_5day', u'High_slope_8day', u'High_slope_10day', u'High_slope_12day', u'High_slope_15day', u'High_slope_20day', u'High_slope_25day', u'High_slope_30day', u'Pips', u'Prediction_Pips', u'Volume', u'Active Hour', u'Active Hour Volume'], dtype='object')

In [5]:
df_eur_usd['Volume'].hist()


Out[5]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f69c0618a10>

In [6]:
df_eur_usd.describe()


Out[6]:
Day Open Day Close Day High Day Low Day Average Momentum_3day Momentum_4day Momentum_5day Momentum_8day Momentum_9day ... High_slope_12day High_slope_15day High_slope_20day High_slope_25day High_slope_30day Pips Prediction_Pips Volume Active Hour Active Hour Volume
count 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 ... 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000 3393.000000
mean 1.328421 1.328375 1.333709 1.323140 1.328355 -0.000212 -0.000280 -0.000345 -0.000538 -0.000605 ... -0.077097 -0.079106 -0.082205 -0.084662 -0.086529 -0.741615 -0.741615 38004.039493 14.066313 4248.521662
std 0.099314 0.099349 0.099534 0.098968 0.099243 0.013297 0.015269 0.017037 0.021381 0.022741 ... 2.034391 1.873241 1.669560 1.529292 1.415316 61.739827 61.739827 31380.498988 4.919580 3918.906844
min 1.047040 1.048410 1.050580 1.046240 1.049250 -0.067170 -0.075150 -0.082550 -0.109460 -0.114780 ... -9.194600 -7.340900 -7.324000 -7.900000 -7.221400 -445.400000 -445.400000 1.000000 0.000000 1.000000
25% 1.271700 1.271620 1.276610 1.266550 1.271690 -0.007350 -0.009060 -0.010200 -0.012710 -0.014020 ... -1.283500 -1.155000 -1.042900 -0.915400 -0.837700 -32.800000 -32.800000 13688.000000 12.000000 1641.000000
50% 1.324220 1.324240 1.329550 1.318860 1.323790 -0.000070 0.000420 0.000200 0.000140 0.000220 ... -0.033100 -0.015900 -0.010500 -0.056200 -0.042600 0.900000 0.900000 35025.000000 14.000000 3282.000000
75% 1.381660 1.381690 1.386330 1.377300 1.381590 0.007450 0.008860 0.010190 0.012540 0.013160 ... 1.165400 1.048400 0.910000 0.838100 0.798200 31.800000 31.800000 52246.000000 15.000000 5629.000000
max 1.597460 1.597420 1.603890 1.589760 1.595290 0.096120 0.103630 0.107460 0.149000 0.167320 ... 14.770800 12.210600 8.039500 8.179400 6.195500 417.300000 417.300000 272386.000000 23.000000 53617.000000

8 rows × 69 columns


In [7]:
df_eur_usd['2015-07-01':'2015-07-10'][['Momentum_3day','Roc_3day','Momentum_4day','Roc_4day','Momentum_5day','Roc_5day','Momentum_8day','Roc_8day','Momentum_9day','Roc_9day','Momentum_10day','Roc_10day']]


Out[7]:
Momentum_3day Roc_3day Momentum_4day Roc_4day Momentum_5day Roc_5day Momentum_8day Roc_8day Momentum_9day Roc_9day Momentum_10day Roc_10day
Date
2015-07-01 0.00621 0.01 -0.01362 -0.01 -0.01660 -0.01 -0.03083 -0.03 -0.03243 -0.03 -0.03129 -0.03
2015-07-02 -0.01327 -0.01 0.01110 0.01 -0.00873 -0.01 -0.00888 -0.01 -0.02594 -0.02 -0.02755 -0.02
2015-07-03 -0.00204 -0.00 -0.01049 -0.01 0.01388 0.01 -0.00922 -0.01 -0.00610 -0.01 -0.02316 -0.02
2015-07-05 -0.00422 -0.00 -0.01393 -0.01 -0.02238 -0.02 -0.02082 -0.02 -0.02111 -0.02 -0.01799 -0.02
2015-07-06 -0.00385 -0.00 0.00104 0.00 -0.00867 -0.01 -0.01258 -0.01 -0.01555 -0.01 -0.01585 -0.01
2015-07-07 -0.01061 -0.01 -0.00783 -0.01 -0.00294 -0.00 0.00327 0.00 -0.01656 -0.01 -0.01954 -0.02
2015-07-08 0.00764 0.01 -0.00425 -0.00 -0.00147 -0.00 -0.01474 -0.01 0.00963 0.01 -0.01020 -0.01
2015-07-09 0.00134 0.00 0.00660 0.01 -0.00529 -0.00 -0.00733 -0.01 -0.01578 -0.01 0.00859 0.01
2015-07-10 0.01476 0.01 0.01078 0.01 0.01604 0.01 0.01182 0.01 0.00211 0.00 -0.00634 -0.01

In [8]:
df_eur_usd['2005-02-01':'2005-02-10'][['Prediction_action','Day Average','Pips','Prediction_Pips']]


Out[8]:
Prediction_action Day Average Pips Prediction_Pips
Date
2005-02-01 buy 1.30303 3.8 26.9
2005-02-02 sell 1.30572 26.9 -69.1
2005-02-03 sell 1.29881 -69.1 -48.6
2005-02-04 sell 1.29395 -48.6 -189.5
2005-02-05 buy 1.27500 -189.5 106.7
2005-02-06 sell 1.28567 106.7 -38.8
2005-02-07 sell 1.28178 -38.8 -54.5
2005-02-08 buy 1.27634 -54.5 19.0
2005-02-09 buy 1.27824 19.0 52.9
2005-02-10 buy 1.28353 52.9 33.0

In [9]:
df_eur_usd['2005-02-01':'2005-02-10'][['Fast_k_3day', 'Fast_d_3day','Fast_k_4day', 'Fast_d_4day','Fast_k_5day', 'Fast_d_5day','Fast_k_8day', 'Fast_d_8day','Fast_k_9day', 'Fast_d_9day','Fast_k_10day', 'Fast_d_10day']]


Out[9]:
Fast_k_3day Fast_d_3day Fast_k_4day Fast_d_4day Fast_k_5day Fast_d_5day Fast_k_8day Fast_d_8day Fast_k_9day Fast_d_9day Fast_k_10day Fast_d_10day
Date
2005-02-01 67 50 47 47 50 50 56 55 58 57 61 58
2005-02-02 47 54 47 49 38 49 49 55 49 57 51 58
2005-02-03 18 44 18 38 18 35 15 40 15 41 15 43
2005-02-04 1 22 1 22 1 19 1 22 1 22 1 22
2005-02-05 0 6 0 6 0 6 0 5 0 5 0 5
2005-02-06 35 12 29 10 29 10 29 10 27 9 27 9
2005-02-07 9 14 9 13 8 12 8 12 8 11 7 11
2005-02-08 25 23 11 16 11 16 9 16 9 15 9 14
2005-02-09 54 29 54 25 24 14 21 13 21 13 21 12
2005-02-10 82 54 82 49 82 39 39 23 39 23 39 23

In [10]:
df_eur_usd['2015-07-01':'2015-07-10'][['PROC_12day','PROC_13day','PROC_14day','PROC_15day']]


Out[10]:
PROC_12day PROC_13day PROC_14day PROC_15day
Date
2015-07-01 -0.03 -0.02 -0.02 -0.02
2015-07-02 -0.03 -0.02 -0.01 -0.02
2015-07-03 -0.02 -0.02 -0.02 -0.01
2015-07-05 -0.03 -0.03 -0.03 -0.03
2015-07-06 -0.03 -0.03 -0.03 -0.03
2015-07-07 -0.01 -0.03 -0.03 -0.03
2015-07-08 -0.01 -0.01 -0.02 -0.03
2015-07-09 -0.01 -0.01 -0.01 -0.03
2015-07-10 -0.00 -0.00 -0.00 -0.00

In [11]:
df_eur_usd['2015-07-01':'2015-07-10'][['WILLIAM_A_D']]


Out[11]:
WILLIAM_A_D
Date
2015-07-01 0.01635
2015-07-02 -0.00810
2015-07-03 -0.00935
2015-07-05 0.00171
2015-07-06 -0.00232
2015-07-07 0.00430
2015-07-08 0.00692
2015-07-09 0.00644
2015-07-10 0.00257

In [12]:
df_eur_usd['2015-07-01':'2015-07-10'][['ADOSC_1day','ADOSC_2day','ADOSC_3day','ADOSC_4day','ADOSC_5day']]


Out[12]:
ADOSC_1day ADOSC_2day ADOSC_3day ADOSC_4day ADOSC_5day
Date
2015-07-01 -34985 -33294 41620 -2280 -1161
2015-07-02 5274 -34985 -33294 41620 -2280
2015-07-03 17659 5274 -34985 -33294 41620
2015-07-05 -1614 17659 5274 -34985 -33294
2015-07-06 2107 -1614 17659 5274 -34985
2015-07-07 17096 2107 -1614 17659 5274
2015-07-08 29657 17096 2107 -1614 17659
2015-07-09 1398 29657 17096 2107 -1614
2015-07-10 11679 1398 29657 17096 2107

In [13]:
df_eur_usd['2015-07-01':'2015-07-10'][[ u'EMA_12Day', u'EMA_26Day', u'MACD']]


Out[13]:
EMA_12Day EMA_26Day MACD
Date
2015-07-01 1.11699 1.11847 -0.00148
2015-07-02 1.11570 1.11774 -0.00204
2015-07-03 1.11503 1.11727 -0.00224
2015-07-05 1.11264 1.11595 -0.00331
2015-07-06 1.11142 1.11512 -0.00370
2015-07-07 1.10978 1.11405 -0.00427
2015-07-08 1.10937 1.11354 -0.00417
2015-07-09 1.10887 1.11299 -0.00412
2015-07-10 1.10989 1.11318 -0.00329

In [14]:
df_eur_usd['2015-07-01':'2015-07-10'][[ u'CCI']]


Out[14]:
CCI
Date
2015-07-01 -140.53
2015-07-02 -121.53
2015-07-03 -96.04
2015-07-05 -148.89
2015-07-06 -102.69
2015-07-07 -120.76
2015-07-08 -78.18
2015-07-09 -63.71
2015-07-10 -8.07

In [15]:
df_eur_usd['2015-07-01':'2015-07-10'][[u'BOLLINGER_BANDS_LOW','Day Close','Day Average','BOLLINGER_BANDS_HIGH']]


Out[15]:
BOLLINGER_BANDS_LOW Day Close Day Average BOLLINGER_BANDS_HIGH
Date
2015-07-01 1.10783 1.10370 1.11038 1.13986
2015-07-02 1.10581 1.10859 1.10823 1.13982
2015-07-03 1.10458 1.11137 1.10991 1.13909
2015-07-05 1.10136 1.09948 1.10017 1.13980
2015-07-06 1.09913 1.10474 1.10534 1.13982
2015-07-07 1.09647 1.10076 1.09773 1.14031
2015-07-08 1.09542 1.10712 1.10393 1.13932
2015-07-09 1.09408 1.10608 1.10483 1.13885
2015-07-10 1.09512 1.11552 1.11432 1.13574

In [16]:
df_eur_usd['2015-07-01':'2015-07-10'][[u'Day High', u'Day Low',u'2DAY_HIGH', u'2DAY_LOW', u'1DAY_HIGH_LOW_AVG', u'2DAY_HIGH_LOW_AVG']]


Out[16]:
Day High Day Low 2DAY_HIGH 2DAY_LOW 1DAY_HIGH_LOW_AVG 2DAY_HIGH_LOW_AVG
Date
2015-07-01 1.11714 1.10324 1.12445 1.10324 1.66877 1.11402
2015-07-02 1.11217 1.10367 1.11714 1.10324 1.66400 1.10906
2015-07-03 1.11177 1.10652 1.11217 1.10367 1.66503 1.10853
2015-07-05 1.10393 1.09698 1.11177 1.09698 1.65242 1.10480
2015-07-06 1.10956 1.09940 1.10956 1.09698 1.65926 1.10247
2015-07-07 1.10524 1.09164 1.10956 1.09164 1.65106 1.10146
2015-07-08 1.10933 1.09743 1.10933 1.09164 1.65804 1.10091
2015-07-09 1.11253 1.09917 1.11253 1.09743 1.66212 1.10461
2015-07-10 1.12159 1.10550 1.12159 1.09917 1.67434 1.10970

In [17]:
df_eur_usd['2015-07-01':'2015-07-10'][[u'High_slope_3day', u'High_slope_4day', u'High_slope_5day', u'High_slope_8day', u'High_slope_10day', u'High_slope_12day', u'High_slope_15day', u'High_slope_20day', u'High_slope_25day', u'High_slope_30day']]


Out[17]:
High_slope_3day High_slope_4day High_slope_5day High_slope_8day High_slope_10day High_slope_12day High_slope_15day High_slope_20day High_slope_25day High_slope_30day
Date
2015-07-01 3.8800 -0.965 -0.9433 -2.6550 -1.9632 -1.5288 -0.3931 -0.6450 -0.0892 0.7816
2015-07-02 -3.9200 2.108 -1.6342 -2.4933 -2.3614 -2.4204 -1.0800 -1.0681 -0.6290 0.4756
2015-07-03 -3.1688 -3.215 1.6908 -1.3028 -2.6609 -2.0746 -1.3263 -1.2805 -1.0092 0.3587
2015-07-05 -3.3037 -4.103 -3.9858 -2.0972 -2.7886 -2.6315 -2.0681 -1.3926 -0.9262 0.1606
2015-07-06 -0.6512 -1.517 -2.4808 -1.3789 -1.2668 -2.4215 -2.1294 -0.9576 -0.0602 0.3761
2015-07-07 -1.6325 -1.385 -1.9842 0.4017 -1.5968 -2.2588 -2.0937 -0.8664 -0.9788 -0.4589
2015-07-08 1.3488 -0.489 -0.4733 -2.0578 -1.1495 -1.0900 -1.8009 -0.9581 -0.9719 -0.6192
2015-07-09 0.7425 1.720 0.1267 -1.3239 0.9914 -0.7904 -1.7819 -0.9743 -1.0050 -0.8219
2015-07-10 4.0875 2.406 2.9433 0.4939 -0.5686 -0.0292 -0.8134 -0.7348 -0.4456 -0.2071

In [22]:
df_eur_usd['2015-07-01':'2015-07-10'][[u'Volume', u'Active Hour', u'Active Hour Volume']]


Out[22]:
Volume Active Hour Active Hour Volume
Date
2015-07-01 37437 9 4728
2015-07-02 33667 12 6855
2015-07-03 20838 8 2299
2015-07-05 5773 22 2377
2015-07-06 41557 7 4107
2015-07-07 50110 19 4466
2015-07-08 47132 7 4278
2015-07-09 41979 7 4067
2015-07-10 47575 9 5037

In [20]:
df_eur_usd[[u'Active Hour']].hist()


Out[20]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f69996c4850>]], dtype=object)

In [ ]: