In [16]:
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def Load(fileName):
#print fileName
d = pd.read_csv(fileName)
dTest = d[d["mode"]=="Test"]
dTrain = d[d["mode"]=="Train"]
return dTest,dTrain
fNames = ["L3_ksize322","L4_ksize322","L4_ksize322_Flip","L4","L4_ksize222","L4_unit100","L4_unit200","L6_ksize222","L8","L4_unit1000","L8_Unit100"]
#fNames = ["L3_ksize322","L4","L4_ksize222","L4_unit100","L4_unit200","L6_ksize222","L8","L8_Unit100"]
#fNames = ["L6_ksize222","L8","L8_Unit100"]
fig, axes = plt.subplots(3,3)
for i,row in enumerate(axes):
for j, cell in enumerate(row):
index = i*len(row) + j
if index>=len(fNames): continue
name = fNames[index]
dTest,dTrain = Load("Output/"+name+"/output.dat")
cell.set_title(name)
cell.plot(dTrain["epoch"],dTrain["accuracy"]*100,"-" )
cell.plot(dTest ["epoch"],dTest ["accuracy"]*100,"--")
cell.set_ylim(0,100)
cell.grid()
fig.tight_layout()
段数に関し:
L1段のunit数に関し:
ksize(MaxPoolingの対象画素)に関し:
左右Flipさせたデータを加え、augumentationを行ったデータに関し:
In [32]:
aList = []
for i in fNames:
dTest,dTrain = Load("Output/"+i+"/output.dat")
aList.append((i,np.array(dTest["accuracy"])[-1]*100.))
#print "%20s: %.1f%%"%(i,np.array(dTest["accuracy"])[-1]*100.)
for i in sorted(aList,key=lambda x: x[1],reverse=True):
print "%20s: %.1f%%"%i