In [41]:
import plotly
import plotly.plotly as py
from plotly.graph_objs import *
import pandas as pd
import math
from IPython.display import Image

In [30]:
plotly.tools.set_credentials_file(username='xjiang36', api_key='uZyWsdSH3xd9bxUefIFf')

In [123]:
import plotly.plotly as py
from plotly.graph_objs import *
import pandas as pd

# read in volcano database data
#df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv')
df = pd.read_csv('t3sample.csv',encoding='iso-8859-1')
colnames=df.columns.values
# frequency of Country
#freq = df
#freq = freq.Country.value_counts().reset_index().rename(columns={'index': 'x'})
freq=df[colnames[4]].value_counts().reset_index().rename(columns={'index': 'x'})
# plot(1) top 10 countries by total volcanoes
freqcol=freq.columns.values

colorbar=["#FF0000","#FF8000","#FFFF00","#80FF00","#00FF00","#00FF80","#00FFFF","#0080FF","#0000FF","#7F00FF","#FF00FF","#FF007F","#808080"]
colorbars=[]

for i in range(len(df[colnames[4]])):
    for j in range(len(freq)):
        if df[colnames[4]][i]==freq["x"][j]:
            if j<12:
                colorbars.append(colorbar[j])
            else:
                colorbars.append(colorbar[12])

sizes=[]
for i in range(len(df[colnames[7]])):
    if df[colnames[7]][i]>df[colnames[7]].median():
        if df[colnames[7]][i]>(df[colnames[7]][df[colnames[7]]>df[colnames[7]].median()].median()):
            sizes.append(10)
        else:
            sizes.append(7.5)
    else:
        if df[colnames[7]][i]>(df[colnames[7]][df[colnames[7]]<df[colnames[7]].median()].median()):
            sizes.append(5)
        else:
            sizes.append(2.5)




locations = Bar(x=freq['x'][0:10],y=freq[freqcol[1]][0:10], marker=dict(color=colorbar))

# read in 3d volcano surface data
#df_v = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv')

# plot(2) 3d surface of volcano
#threed = Surface(z=df_v.values.tolist(), colorscale='Reds', showscale=False)
#logsizes=[]
#for i in range(len(df[colnames[4]])):
#    logsize=math.log10(float(df[colnames[5]][i]))
#    logsize=logsize*1.5
#    logsizes.append(logsize)



# plot(3)  scattergeo map of volcano locations
trace3 = {
  "geo": "geo3", 
  "lon": df[colnames[3]],
  "lat": df[colnames[2]],
  "hoverinfo": 'text',
  "marker": {
    "size": sizes,
    "opacity": 0.8,
    "color": colorbars,
    "colorscale": 'Viridis'
  }, 
  "mode": "markers", 
  "type": "scattergeo"
}

data = Data([locations, trace3])

# control the subplot below using domain in 'geo', 'scene', and 'axis'
layout = {
  "plot_bgcolor": 'black',
  "paper_bgcolor": 'black',
  "titlefont": {
      "size": 20,
      "family": "Raleway"
  },
  "font": {
      "color": 'white'
  },
  "dragmode": "zoom", 
  "geo3": {
    "domain": {
      "x": [0, 0.55], 
      "y": [0, 0.9]
    }, 
    "lakecolor": "rgba(127,205,255,1)",
    "oceancolor": "rgb(6,66,115)",
    "landcolor": 'white',
    "projection": {"type": "orthographic"}, 
    "scope": "world", 
    "showlakes": True,
    "showocean": True,
    "showland": True,
    "bgcolor": 'black'
  }, 
  "margin": {
    "r": 10, 
    "t": 25, 
    "b": 40, 
    "l": 60
  }, 
  "scene": {"domain": {
      "x": [0.5, 1], 
      "y": [0, 0.55]
    },
           "xaxis": {"gridcolor": 'white'},
           "yaxis": {"gridcolor": 'white'},
           "zaxis": {"gridcolor": 'white'}
           }, 
  "showlegend": False, 
  "title": "<br>Distribution of %s" % colnames[5], 
  "xaxis": {
    "anchor": "y", 
    "domain": [0.6, 0.95]
  }, 
  "yaxis": {
    "anchor": "x", 
    "domain": [0.1, 0.9],
    "showgrid": False
  }
}

annotations = { "text": "Histrogram of %s" % colnames[5],
               "showarrow": False,
               "xref": "paper",
               "yref": "paper",
               "x": 0.85,
               "y": 0.95}

annotations2 = { "text": "By Whale Team",
               "showarrow": False,
               "xref": "paper",
               "yref": "paper",
               "x": 0,
               "y": 0}

layout['annotations'] = [annotations,annotations2]

fig = Figure(data=data, layout=layout)
py.iplot(fig, filename = "Mixed Subplots Volcano")


Out[123]:

In [47]:
def visulize(dataset):
    df = pd.read_csv(dataset,encoding='iso-8859-1')
    
    colnames=df.columns.values
    # frequency of Country
    #freq = df
    #freq = freq.Country.value_counts().reset_index().rename(columns={'index': 'x'})
    freq=df[colnames[4]].value_counts().reset_index().rename(columns={'index': 'x'})
    # plot(1) top 10 countries by total volcanoes
    freqcol=freq.columns.values
    locations = Bar(x=freq['x'][0:10],y=freq[freqcol[1]][0:10], marker=dict(color='#CF1020'))
    
    # read in 3d volcano surface data
    #df_v = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv')
    
    # plot(2) 3d surface of volcano
    #threed = Surface(z=df_v.values.tolist(), colorscale='Reds', showscale=False)
    #logsizes=[]
    #for i in range(len(df[colnames[4]])):
    #    logsize=math.log10(float(df[colnames[5]][i]))
    #    logsize=logsize*1.5
    #    logsizes.append(logsize)
    
    # plot(3)  scattergeo map of volcano locations
    trace3 = {
        "geo": "geo3", 
        "lon": df[colnames[3]],
        "lat": df[colnames[2]],
        "hoverinfo": 'text',
        "marker": {
            "size": df[colnames[5]],
            "opacity": 0.8,
            "color": '#CF1020',
            "colorscale": 'Viridis'
        }, 
        "mode": "markers", 
        "type": "scattergeo"
    }
    
    data = Data([locations, trace3])
    
    # control the subplot below using domain in 'geo', 'scene', and 'axis'
    layout = {
        "plot_bgcolor": 'black',
        "paper_bgcolor": 'black',
        "titlefont": {
            "size": 20,
            "family": "Raleway"
        },
        "font": {
            "color": 'white'
        },
        "dragmode": "zoom", 
        "geo3": {
            "domain": {
                "x": [0, 0.55], 
                "y": [0, 0.9]
            },
            "lakecolor": "rgba(127,205,255,1)",
            "oceancolor": "rgb(6,66,115)",
            "landcolor": 'white',
            "projection": {"type": "orthographic"}, 
            "scope": "world", 
            "showlakes": True,
            "showocean": True,
            "showland": True,
            "bgcolor": 'black'
        }, 
        "margin": {
            "r": 10, 
            "t": 25, 
            "b": 40, 
            "l": 60
        }, 
        "scene": {"domain": {
            "x": [0.5, 1], 
            "y": [0, 0.55]
        },
                  "xaxis": {"gridcolor": 'white'},
                  "yaxis": {"gridcolor": 'white'},
                  "zaxis": {"gridcolor": 'white'}
                 }, 
        "showlegend": False, 
        "title": "<br>Distribution of %s" % colnames[5], 
        "xaxis": {
            "anchor": "y", 
            "domain": [0.6, 0.95]
        }, 
        "yaxis": {
            "anchor": "x", 
            "domain": [0.1, 0.9],
            "showgrid": False
        }
    }
    
    annotations = { "text": "Histrogram of %s" % colnames[5],
                   "showarrow": False,
                   "xref": "paper",
                   "yref": "paper",
                   "x": 0.85,
                   "y": 0.95}
    
    annotations2 = { "text": "By Whale Team",
                    "showarrow": False,
                    "xref": "paper",
                    "yref": "paper",
                    "x": 0,
                    "y": 0}
    
    
    
    
    layout['annotations'] = [annotations,annotations2]
    fig = Figure(data=data, layout=layout)
    #py.iplot(fig, filename = "Mixed Subplots Volcano")
    py.image.save_as(fig,'chris-plot.png')
    
    
    
    

#Image('chris-plot.png')
    #py.offline.plot(fig, filename = "Mixed Subplots Volcano")

In [48]:
visulize("t3sample.csv")

In [49]:
Image('chris-plot.png')


Out[49]:

In [103]:
colorbar=["#FF0000","#FF8000","#FFFF00","#80FF00","#00FF00","#00FF80","#00FFFF","#0080FF","#0000FF","#7F00FF","#FF00FF","#FF007F","#808080"]
colorbars=[]

for i in range(len(df[colnames[4]])):
    for j in range(len(freq)):
        if df[colnames[4]][i]==freq["x"][j]:
            if j<12:
                colorbars.append(colorbar[j])
            else:
                colorbars.append(colorbar[12])

In [102]:
len(freq)


Out[102]:
10

In [68]:
df[colnames[6]].max()-df[colnames[6]].min()


Out[68]:
59.973812410000001

In [69]:
df[colnames[7]].max()-df[colnames[7]].min()


Out[69]:
9998.6528708450005

In [78]:
if df[colnames[7]].max()<0:
    df[colnames[7]]+(0-df[colnames[7]].min()+1)
else:
    df[colnames[7]]+df[colnames[7]].max()

In [94]:
df[colnames[7]].median()


Out[94]:
4920.907778999999

In [95]:
sizes=[]
for i in range(len(df[colnames[7]])):
    if df[colnames[7]][i]>df[colnames[7]].median():
        if df[colnames[7]][i]>(df[colnames[7]][df[colnames[7]]>df[colnames[7]].median()].median()):
            sizes.append(10)
        else:
            sizes.append(7.5)
    else:
        if df[colnames[7]][i]>(df[colnames[7]][df[colnames[7]]<df[colnames[7]].median()].median()):
            sizes.append(5)
        else:
            sizes.append(2.5)

In [96]:
sizes


Out[96]:
[7.5,
 2.5,
 2.5,
 5,
 7.5,
 10,
 10,
 10,
 5,
 2.5,
 2.5,
 7.5,
 2.5,
 5,
 7.5,
 7.5,
 7.5,
 7.5,
 5,
 7.5,
 2.5,
 5,
 2.5,
 10,
 10,
 10,
 10,
 10,
 5,
 2.5,
 5,
 7.5,
 2.5,
 7.5,
 10,
 2.5,
 7.5,
 7.5,
 10,
 7.5,
 7.5,
 7.5,
 2.5,
 5,
 2.5,
 7.5,
 5,
 10,
 2.5,
 7.5,
 5,
 10,
 2.5,
 2.5,
 5,
 10,
 10,
 7.5,
 7.5,
 7.5,
 10,
 7.5,
 5,
 7.5,
 5,
 2.5,
 2.5,
 2.5,
 5,
 5,
 7.5,
 10,
 7.5,
 5,
 10,
 7.5,
 10,
 7.5,
 10,
 7.5,
 10,
 5,
 10,
 2.5,
 10,
 10,
 7.5,
 2.5,
 5,
 10,
 10,
 5,
 2.5,
 5,
 2.5,
 2.5,
 7.5,
 10,
 2.5,
 2.5,
 7.5,
 2.5,
 5,
 5,
 10,
 5,
 2.5,
 10,
 7.5,
 10,
 10,
 5,
 5,
 10,
 10,
 2.5,
 5,
 5,
 2.5,
 5,
 5,
 5,
 10,
 10,
 5,
 10,
 2.5,
 7.5,
 5,
 10,
 7.5,
 10,
 10,
 10,
 10,
 7.5,
 10,
 10,
 2.5,
 7.5,
 10,
 2.5,
 10,
 7.5,
 10,
 7.5,
 5,
 5,
 5,
 10,
 2.5,
 5,
 5,
 7.5,
 2.5,
 7.5,
 7.5,
 7.5,
 7.5,
 2.5,
 2.5,
 2.5,
 10,
 7.5,
 5,
 5,
 10,
 2.5,
 7.5,
 2.5,
 10,
 2.5,
 7.5,
 2.5,
 2.5,
 7.5,
 7.5,
 2.5,
 5,
 2.5,
 10,
 10,
 7.5,
 7.5,
 2.5,
 2.5,
 10,
 10,
 7.5,
 2.5,
 10,
 2.5,
 10,
 2.5,
 7.5,
 10,
 7.5,
 2.5,
 7.5,
 10,
 10,
 5,
 7.5,
 5,
 5,
 7.5,
 10,
 5,
 7.5,
 10,
 10,
 10,
 10,
 7.5,
 7.5,
 2.5,
 7.5,
 7.5,
 10,
 5,
 2.5,
 7.5,
 2.5,
 5,
 10,
 2.5,
 7.5,
 10,
 7.5,
 7.5,
 5,
 7.5,
 5,
 2.5,
 10,
 10,
 7.5,
 5,
 2.5,
 2.5,
 10,
 2.5,
 2.5,
 2.5,
 10,
 7.5,
 2.5,
 7.5,
 2.5,
 2.5,
 7.5,
 7.5,
 5,
 5,
 7.5,
 10,
 10,
 5,
 10,
 10,
 5,
 5,
 10,
 7.5,
 2.5,
 5,
 10,
 5,
 5,
 5,
 10,
 2.5,
 7.5,
 7.5,
 5,
 7.5,
 7.5,
 2.5,
 7.5,
 2.5,
 7.5,
 10,
 5,
 5,
 10,
 7.5,
 5,
 2.5,
 7.5,
 2.5,
 2.5,
 5,
 5,
 5,
 5,
 5,
 7.5,
 2.5,
 10,
 10,
 5,
 2.5,
 10,
 10,
 2.5,
 2.5,
 5,
 2.5,
 7.5,
 7.5,
 5,
 5,
 2.5,
 5,
 7.5,
 7.5,
 10,
 7.5,
 5,
 2.5,
 10,
 2.5,
 2.5,
 10,
 7.5,
 2.5,
 7.5,
 10,
 2.5,
 10,
 5,
 2.5,
 7.5,
 10,
 2.5,
 7.5,
 10,
 5,
 2.5,
 5,
 5,
 5,
 10,
 10,
 7.5,
 5,
 2.5,
 7.5,
 10,
 5,
 10,
 10,
 5,
 2.5,
 2.5,
 5,
 10,
 10,
 10,
 7.5,
 5,
 2.5,
 5,
 5,
 7.5,
 10,
 7.5,
 10,
 10,
 2.5,
 10,
 5,
 7.5,
 10,
 5,
 10,
 2.5,
 5,
 10,
 5,
 7.5,
 7.5,
 7.5,
 5,
 7.5,
 10,
 2.5,
 7.5,
 5,
 5,
 2.5,
 2.5,
 5,
 7.5,
 2.5,
 5,
 7.5,
 2.5,
 10,
 10,
 2.5,
 10,
 7.5,
 10,
 10,
 5,
 10,
 2.5,
 10,
 5,
 10,
 5,
 7.5,
 2.5,
 10,
 10,
 5,
 5,
 7.5,
 10,
 5,
 7.5,
 2.5,
 7.5,
 10,
 7.5,
 10,
 10,
 5,
 7.5,
 10,
 7.5,
 2.5,
 10,
 7.5,
 10,
 2.5,
 10,
 5,
 2.5,
 5,
 10,
 7.5,
 10,
 7.5,
 5,
 5,
 2.5,
 7.5,
 2.5,
 7.5,
 10,
 5,
 5,
 7.5,
 2.5,
 2.5,
 10,
 10,
 2.5,
 7.5,
 5,
 7.5,
 2.5,
 7.5,
 10,
 7.5,
 10,
 7.5,
 10,
 2.5,
 10,
 5,
 5,
 10,
 10,
 7.5,
 10,
 10,
 2.5,
 10,
 2.5,
 2.5,
 2.5,
 10,
 10,
 2.5,
 7.5,
 2.5,
 7.5,
 2.5,
 5,
 10,
 7.5,
 7.5,
 10,
 2.5,
 2.5,
 5,
 2.5,
 7.5,
 5,
 5,
 5,
 10,
 2.5,
 2.5,
 5,
 10,
 2.5,
 2.5,
 7.5,
 7.5,
 10,
 2.5,
 5,
 5,
 7.5,
 5,
 5,
 7.5,
 5,
 2.5,
 5,
 5,
 2.5,
 5,
 2.5,
 2.5,
 10,
 2.5,
 7.5,
 5,
 2.5,
 2.5,
 7.5,
 10,
 5,
 10,
 10,
 2.5,
 5,
 10,
 7.5,
 2.5,
 2.5,
 7.5,
 7.5,
 2.5,
 2.5,
 2.5,
 10,
 7.5,
 7.5,
 7.5,
 7.5,
 10,
 2.5,
 7.5,
 5,
 5,
 5,
 2.5,
 2.5,
 7.5,
 2.5,
 5,
 5,
 5,
 10,
 10,
 10,
 7.5,
 2.5,
 5,
 5,
 2.5,
 10,
 7.5,
 7.5,
 5,
 5,
 7.5,
 5,
 10,
 7.5,
 2.5,
 7.5,
 2.5,
 2.5,
 2.5,
 7.5,
 10,
 2.5,
 2.5,
 2.5,
 7.5,
 7.5,
 7.5,
 2.5,
 10,
 10,
 5,
 2.5,
 7.5,
 2.5,
 7.5,
 5,
 7.5,
 5,
 10,
 7.5,
 5,
 2.5,
 5,
 7.5,
 10,
 5,
 10,
 5,
 10,
 2.5,
 5,
 10,
 10,
 2.5,
 10,
 2.5,
 5,
 7.5,
 5,
 2.5,
 7.5,
 10,
 5,
 10,
 2.5,
 7.5,
 5,
 2.5,
 5,
 7.5,
 5,
 5,
 7.5,
 10,
 10,
 7.5,
 7.5,
 5,
 10,
 5,
 10,
 5,
 10,
 7.5,
 2.5,
 2.5,
 5,
 5,
 10,
 5,
 5,
 5,
 7.5,
 10,
 5,
 5,
 7.5,
 10,
 5,
 10,
 2.5,
 7.5,
 7.5,
 5,
 10,
 7.5,
 7.5,
 7.5,
 7.5,
 5,
 2.5,
 7.5,
 2.5,
 2.5,
 7.5,
 5,
 10,
 7.5,
 7.5,
 7.5,
 5,
 5,
 5,
 7.5,
 7.5,
 2.5,
 2.5,
 2.5,
 7.5,
 10,
 10,
 7.5,
 5,
 5,
 5,
 2.5,
 5,
 7.5,
 7.5,
 7.5,
 10,
 10,
 2.5,
 10,
 5,
 5,
 7.5,
 7.5,
 7.5,
 5,
 2.5,
 5,
 10,
 7.5,
 5,
 7.5,
 10,
 7.5,
 5,
 7.5,
 5,
 2.5,
 7.5,
 2.5,
 2.5,
 7.5,
 2.5,
 2.5,
 10,
 2.5,
 7.5,
 5,
 5,
 5,
 5,
 2.5,
 10,
 7.5,
 2.5,
 2.5,
 10,
 2.5,
 10,
 5,
 5,
 2.5,
 10,
 10,
 10,
 5,
 7.5,
 5,
 5,
 2.5,
 2.5,
 5,
 10,
 5,
 2.5,
 2.5,
 10,
 7.5,
 2.5,
 10,
 10,
 2.5,
 2.5,
 2.5,
 7.5,
 5,
 2.5,
 10,
 10,
 7.5,
 7.5,
 2.5,
 7.5,
 5,
 7.5,
 5,
 7.5,
 2.5,
 2.5,
 5,
 5,
 5,
 2.5,
 10,
 2.5,
 10,
 7.5,
 10,
 2.5,
 5,
 7.5,
 5,
 7.5,
 7.5,
 7.5,
 7.5,
 10,
 5,
 7.5,
 5,
 7.5,
 7.5,
 7.5,
 2.5,
 7.5,
 10,
 5,
 5,
 10,
 2.5,
 2.5,
 2.5,
 10,
 10,
 7.5,
 5,
 2.5,
 7.5,
 7.5,
 10,
 5,
 7.5,
 2.5,
 7.5,
 10,
 5,
 2.5,
 2.5,
 7.5,
 2.5,
 5,
 2.5,
 10,
 2.5,
 10,
 10,
 2.5,
 2.5,
 5,
 5,
 7.5,
 7.5,
 5,
 10,
 2.5,
 10,
 10,
 7.5,
 7.5,
 10,
 2.5,
 2.5,
 5,
 2.5,
 7.5,
 5,
 10,
 5,
 7.5,
 5,
 5,
 2.5,
 2.5,
 2.5,
 7.5,
 10,
 10,
 2.5,
 5,
 10,
 7.5,
 7.5,
 5,
 5,
 7.5,
 5,
 2.5,
 7.5,
 2.5,
 7.5,
 2.5,
 10,
 2.5,
 5,
 10,
 7.5,
 7.5,
 7.5,
 10,
 10,
 7.5,
 10,
 7.5,
 10,
 7.5,
 10,
 2.5,
 7.5,
 10,
 10,
 5,
 5,
 10,
 7.5,
 10,
 7.5,
 2.5,
 10,
 5,
 5,
 10,
 5,
 7.5,
 2.5,
 5,
 10,
 2.5,
 7.5,
 2.5,
 5,
 5,
 2.5,
 10,
 10,
 7.5,
 2.5,
 5,
 10,
 10,
 10,
 10,
 2.5,
 2.5,
 7.5,
 7.5,
 2.5,
 7.5,
 7.5,
 10,
 7.5,
 7.5,
 7.5,
 2.5,
 2.5,
 2.5,
 10,
 10,
 5,
 2.5,
 5,
 10,
 2.5,
 10,
 10,
 5,
 10,
 5,
 7.5,
 2.5,
 2.5,
 5,
 5,
 2.5,
 5,
 5,
 5,
 10,
 7.5,
 10,
 10,
 10,
 2.5,
 2.5,
 2.5,
 7.5,
 10,
 10,
 5,
 7.5,
 10,
 10,
 7.5,
 7.5,
 2.5,
 ...]

In [109]:
df[colnames[4]]


Out[109]:
0       Category01
1       Category00
2       Category04
3       Category03
4       Category05
5       Category00
6       Category04
7       Category04
8       Category07
9       Category09
10      Category01
11      Category01
12      Category05
13      Category08
14      Category09
15      Category02
16      Category09
17      Category00
18      Category02
19      Category09
20      Category09
21      Category05
22      Category09
23      Category08
24      Category09
25      Category07
26      Category00
27      Category06
28      Category02
29      Category07
           ...    
9970    Category01
9971    Category02
9972    Category02
9973    Category08
9974    Category03
9975    Category03
9976    Category05
9977    Category03
9978    Category07
9979    Category02
9980    Category03
9981    Category02
9982    Category03
9983    Category05
9984    Category04
9985    Category05
9986    Category09
9987    Category00
9988    Category03
9989    Category00
9990    Category03
9991    Category06
9992    Category01
9993    Category02
9994    Category05
9995    Category05
9996    Category06
9997    Category00
9998    Category06
9999    Category09
Name: categorical, dtype: object

In [110]:
colorbars


Out[110]:
['#00FFFF',
 '#0000FF',
 '#FF0000',
 '#FFFF00',
 '#FF8000',
 '#0000FF',
 '#FF0000',
 '#FF0000',
 '#00FF00',
 '#7F00FF',
 '#00FFFF',
 '#00FFFF',
 '#FF8000',
 '#0080FF',
 '#7F00FF',
 '#80FF00',
 '#7F00FF',
 '#0000FF',
 '#80FF00',
 '#7F00FF',
 '#7F00FF',
 '#FF8000',
 '#7F00FF',
 '#0080FF',
 '#7F00FF',
 '#00FF00',
 '#0000FF',
 '#00FF80',
 '#80FF00',
 '#00FF00',
 '#00FF80',
 '#00FF00',
 '#FF0000',
 '#0000FF',
 '#00FF80',
 '#FF8000',
 '#00FFFF',
 '#00FFFF',
 '#FFFF00',
 '#FF8000',
 '#00FF80',
 '#FFFF00',
 '#0000FF',
 '#0000FF',
 '#00FF80',
 '#0000FF',
 '#0000FF',
 '#00FFFF',
 '#0080FF',
 '#7F00FF',
 '#0000FF',
 '#FF0000',
 '#7F00FF',
 '#7F00FF',
 '#FFFF00',
 '#00FFFF',
 '#FF0000',
 '#FF8000',
 '#00FF80',
 '#7F00FF',
 '#FFFF00',
 '#FF0000',
 '#00FF00',
 '#00FF80',
 '#00FFFF',
 '#FF0000',
 '#00FF80',
 '#00FF80',
 '#00FFFF',
 '#0080FF',
 '#80FF00',
 '#00FF00',
 '#0080FF',
 '#0080FF',
 '#80FF00',
 '#80FF00',
 '#00FF80',
 '#7F00FF',
 '#FF0000',
 '#FFFF00',
 '#00FF00',
 '#FFFF00',
 '#80FF00',
 '#0080FF',
 '#FF8000',
 '#FFFF00',
 '#00FF00',
 '#0000FF',
 '#00FFFF',
 '#00FF80',
 '#7F00FF',
 '#00FF80',
 '#00FF80',
 '#00FFFF',
 '#0080FF',
 '#FF0000',
 '#FF8000',
 '#FF0000',
 '#FF0000',
 '#0080FF',
 '#7F00FF',
 '#FF8000',
 '#00FF00',
 '#FF0000',
 '#FF8000',
 '#FF8000',
 '#00FFFF',
 '#80FF00',
 '#00FF00',
 '#00FF00',
 '#00FF00',
 '#FF0000',
 '#0080FF',
 '#00FF00',
 '#00FFFF',
 '#FFFF00',
 '#00FF80',
 '#0080FF',
 '#00FF00',
 '#0000FF',
 '#00FFFF',
 '#FF0000',
 '#00FF80',
 '#00FF00',
 '#0080FF',
 '#00FF80',
 '#00FFFF',
 '#7F00FF',
 '#80FF00',
 '#FF8000',
 '#00FF00',
 '#80FF00',
 '#00FF00',
 '#80FF00',
 '#00FF80',
 '#FF8000',
 '#7F00FF',
 '#00FFFF',
 '#0000FF',
 '#FFFF00',
 '#00FFFF',
 '#0000FF',
 '#0080FF',
 '#00FFFF',
 '#FF8000',
 '#FFFF00',
 '#FF8000',
 '#7F00FF',
 '#7F00FF',
 '#00FFFF',
 '#80FF00',
 '#00FF00',
 '#FF8000',
 '#FFFF00',
 '#0000FF',
 '#0080FF',
 '#FF0000',
 '#FF8000',
 '#FFFF00',
 '#0080FF',
 '#FFFF00',
 '#00FF00',
 '#80FF00',
 '#00FFFF',
 '#00FFFF',
 '#0080FF',
 '#0080FF',
 '#0000FF',
 '#FFFF00',
 '#00FFFF',
 '#FFFF00',
 '#FFFF00',
 '#FFFF00',
 '#80FF00',
 '#0000FF',
 '#FF0000',
 '#00FF80',
 '#00FFFF',
 '#0000FF',
 '#00FFFF',
 '#FFFF00',
 '#FF0000',
 '#80FF00',
 '#0000FF',
 '#FF8000',
 '#0080FF',
 '#7F00FF',
 '#FF8000',
 '#00FFFF',
 '#0000FF',
 '#00FFFF',
 '#FFFF00',
 '#FF8000',
 '#0000FF',
 '#FF0000',
 '#FF0000',
 '#FF0000',
 '#0080FF',
 '#00FFFF',
 '#FF0000',
 '#FFFF00',
 '#FF0000',
 '#FF0000',
 '#FF8000',
 '#0000FF',
 '#FF0000',
 '#7F00FF',
 '#80FF00',
 '#0000FF',
 '#FF0000',
 '#80FF00',
 '#0080FF',
 '#00FF00',
 '#80FF00',
 '#FF0000',
 '#80FF00',
 '#FF0000',
 '#FF0000',
 '#00FF00',
 '#FFFF00',
 '#0000FF',
 '#00FFFF',
 '#00FFFF',
 '#80FF00',
 '#FF0000',
 '#0080FF',
 '#7F00FF',
 '#00FF00',
 '#00FF80',
 '#FF0000',
 '#00FF00',
 '#80FF00',
 '#FFFF00',
 '#FF8000',
 '#00FF80',
 '#FFFF00',
 '#FF8000',
 '#FF0000',
 '#FF0000',
 '#0000FF',
 '#00FF80',
 '#0000FF',
 '#7F00FF',
 '#0000FF',
 '#80FF00',
 '#00FF00',
 '#80FF00',
 '#FFFF00',
 '#FF8000',
 '#FF8000',
 '#80FF00',
 '#FFFF00',
 '#0080FF',
 '#0000FF',
 '#7F00FF',
 '#00FFFF',
 '#FF8000',
 '#00FF00',
 '#00FF80',
 '#0000FF',
 '#FFFF00',
 '#00FFFF',
 '#0000FF',
 '#00FF00',
 '#00FFFF',
 '#FF8000',
 '#7F00FF',
 '#FF8000',
 '#0000FF',
 '#7F00FF',
 '#00FF00',
 '#7F00FF',
 '#FF0000',
 '#FFFF00',
 '#0000FF',
 '#00FFFF',
 '#0000FF',
 '#00FF80',
 '#FF8000',
 '#FF8000',
 '#FF0000',
 '#00FF00',
 '#00FFFF',
 '#00FF80',
 '#00FF80',
 '#FF8000',
 '#00FF00',
 '#00FF00',
 '#0080FF',
 '#00FF80',
 '#FF8000',
 '#80FF00',
 '#FFFF00',
 '#0000FF',
 '#7F00FF',
 '#FF0000',
 '#00FF00',
 '#00FF00',
 '#80FF00',
 '#FF0000',
 '#FFFF00',
 '#FF8000',
 '#0080FF',
 '#00FFFF',
 '#80FF00',
 '#00FF80',
 '#00FF80',
 '#80FF00',
 '#0000FF',
 '#FF0000',
 '#0000FF',
 '#FF8000',
 '#80FF00',
 '#80FF00',
 '#FF8000',
 '#00FF80',
 '#FF0000',
 '#0080FF',
 '#00FFFF',
 '#0000FF',
 '#00FF00',
 '#00FFFF',
 '#00FFFF',
 '#7F00FF',
 '#7F00FF',
 '#80FF00',
 '#0000FF',
 '#00FF00',
 '#FF8000',
 '#FF8000',
 '#80FF00',
 '#00FF80',
 '#FF0000',
 '#FFFF00',
 '#FF8000',
 '#0080FF',
 '#00FF00',
 '#00FF00',
 '#0000FF',
 '#00FF80',
 '#0000FF',
 '#7F00FF',
 '#FF0000',
 '#7F00FF',
 '#00FF00',
 '#FFFF00',
 '#FF0000',
 '#00FF80',
 '#80FF00',
 '#00FFFF',
 '#0000FF',
 '#FF8000',
 '#00FFFF',
 '#7F00FF',
 '#FF0000',
 '#FFFF00',
 '#0000FF',
 '#FF8000',
 '#FF8000',
 '#00FF80',
 '#00FF00',
 '#FF8000',
 '#0080FF',
 '#00FFFF',
 '#80FF00',
 '#00FFFF',
 '#00FF00',
 '#00FF80',
 '#0080FF',
 '#0080FF',
 '#FF8000',
 '#00FFFF',
 '#0000FF',
 '#00FFFF',
 '#0000FF',
 '#00FF80',
 '#FF0000',
 '#FF0000',
 '#00FF00',
 '#00FF00',
 '#00FF80',
 '#FFFF00',
 '#0080FF',
 '#00FFFF',
 '#0080FF',
 '#FF0000',
 '#0080FF',
 '#FF8000',
 '#FFFF00',
 '#00FF80',
 '#0000FF',
 '#0000FF',
 '#80FF00',
 '#FF8000',
 '#0080FF',
 '#7F00FF',
 '#0080FF',
 '#FF8000',
 '#FF8000',
 '#FF0000',
 '#00FF00',
 '#7F00FF',
 '#FF0000',
 '#00FF00',
 '#FF0000',
 '#FF0000',
 '#00FFFF',
 '#80FF00',
 '#FFFF00',
 '#0080FF',
 '#FFFF00',
 '#00FFFF',
 '#FFFF00',
 '#0080FF',
 '#00FF00',
 '#0000FF',
 '#FFFF00',
 '#0000FF',
 '#FF8000',
 '#00FF00',
 '#7F00FF',
 '#7F00FF',
 '#00FF00',
 '#7F00FF',
 '#0000FF',
 '#FFFF00',
 '#FF0000',
 '#FFFF00',
 '#FF8000',
 '#0000FF',
 '#FFFF00',
 '#80FF00',
 '#7F00FF',
 '#00FF80',
 '#FF0000',
 '#0080FF',
 '#FF0000',
 '#FF0000',
 '#0000FF',
 '#0080FF',
 '#FFFF00',
 '#FFFF00',
 '#FF0000',
 '#FF8000',
 '#FF0000',
 '#FF8000',
 '#00FF00',
 '#00FF00',
 '#80FF00',
 '#80FF00',
 '#FF0000',
 '#80FF00',
 '#00FF00',
 '#00FF00',
 '#FFFF00',
 '#00FFFF',
 '#00FFFF',
 '#FF8000',
 '#FF0000',
 '#FF8000',
 '#FF8000',
 '#FFFF00',
 '#FFFF00',
 '#80FF00',
 '#80FF00',
 '#0000FF',
 '#80FF00',
 '#FF0000',
 '#80FF00',
 '#00FF00',
 '#00FFFF',
 '#FFFF00',
 '#FF0000',
 '#80FF00',
 '#00FFFF',
 '#FFFF00',
 '#FFFF00',
 '#FF0000',
 '#0000FF',
 '#00FF00',
 '#00FF00',
 '#80FF00',
 '#FF8000',
 '#0000FF',
 '#00FF80',
 '#FFFF00',
 '#FF8000',
 '#0080FF',
 '#0000FF',
 '#0000FF',
 '#FF8000',
 '#FF8000',
 '#80FF00',
 '#0080FF',
 '#7F00FF',
 '#0080FF',
 '#00FFFF',
 '#0000FF',
 '#0000FF',
 '#00FF00',
 '#80FF00',
 '#00FF00',
 '#00FF80',
 '#00FF80',
 '#0080FF',
 '#FF0000',
 '#80FF00',
 '#FFFF00',
 '#FF0000',
 '#00FF80',
 '#80FF00',
 '#0080FF',
 '#FF0000',
 '#00FF80',
 '#00FF00',
 '#0000FF',
 '#FF0000',
 '#FFFF00',
 '#80FF00',
 '#00FF80',
 '#00FF80',
 '#7F00FF',
 '#80FF00',
 '#00FF00',
 '#7F00FF',
 '#FF8000',
 '#FF0000',
 '#7F00FF',
 '#80FF00',
 '#FF0000',
 '#00FF80',
 '#00FF80',
 '#0080FF',
 '#0080FF',
 '#FFFF00',
 '#FFFF00',
 '#80FF00',
 '#00FF80',
 '#FF0000',
 '#80FF00',
 '#0080FF',
 '#80FF00',
 '#0000FF',
 '#00FF00',
 '#00FFFF',
 '#0080FF',
 '#00FF80',
 '#0080FF',
 '#FF8000',
 '#7F00FF',
 '#80FF00',
 '#FF0000',
 '#FFFF00',
 '#FF8000',
 '#0080FF',
 '#FF0000',
 '#FF0000',
 '#80FF00',
 '#0080FF',
 '#0080FF',
 '#FF8000',
 '#FFFF00',
 '#00FF80',
 '#00FF80',
 '#80FF00',
 '#00FF80',
 '#0080FF',
 '#7F00FF',
 '#00FFFF',
 '#00FF80',
 '#FF8000',
 '#00FFFF',
 '#FF0000',
 '#FF0000',
 '#FF8000',
 '#00FF00',
 '#FFFF00',
 '#0080FF',
 '#FFFF00',
 '#00FFFF',
 '#00FF80',
 '#FF0000',
 '#00FFFF',
 '#0000FF',
 '#0000FF',
 '#7F00FF',
 '#FF0000',
 '#00FF80',
 '#FFFF00',
 '#80FF00',
 '#80FF00',
 '#FF8000',
 '#00FF00',
 '#0000FF',
 '#FF0000',
 '#00FFFF',
 '#0080FF',
 '#00FFFF',
 '#0000FF',
 '#7F00FF',
 '#7F00FF',
 '#FFFF00',
 '#00FFFF',
 '#00FFFF',
 '#80FF00',
 '#80FF00',
 '#FF8000',
 '#00FF80',
 '#00FF00',
 '#FF8000',
 '#FFFF00',
 '#7F00FF',
 '#7F00FF',
 '#00FF80',
 '#00FF00',
 '#7F00FF',
 '#FFFF00',
 '#FF8000',
 '#80FF00',
 '#0000FF',
 '#FF8000',
 '#7F00FF',
 '#0000FF',
 '#00FF80',
 '#00FFFF',
 '#0000FF',
 '#FFFF00',
 '#FF8000',
 '#FF0000',
 '#FF0000',
 '#80FF00',
 '#FFFF00',
 '#00FFFF',
 '#FFFF00',
 '#0000FF',
 '#00FFFF',
 '#FF0000',
 '#0080FF',
 '#FFFF00',
 '#0080FF',
 '#0000FF',
 '#FFFF00',
 '#FF8000',
 '#00FF80',
 '#FFFF00',
 '#FFFF00',
 '#00FFFF',
 '#00FFFF',
 '#FF8000',
 '#FFFF00',
 '#FF8000',
 '#00FF00',
 '#FF8000',
 '#80FF00',
 '#FF0000',
 '#00FF00',
 '#FF0000',
 '#FFFF00',
 '#00FF80',
 '#80FF00',
 '#0080FF',
 '#00FF00',
 '#80FF00',
 '#FFFF00',
 '#FF8000',
 '#80FF00',
 '#FFFF00',
 '#FF8000',
 '#00FFFF',
 '#80FF00',
 '#0000FF',
 '#00FF80',
 '#FFFF00',
 '#7F00FF',
 '#00FF00',
 '#0080FF',
 '#00FF80',
 '#0000FF',
 '#7F00FF',
 '#00FF80',
 '#FFFF00',
 '#00FF00',
 '#7F00FF',
 '#00FFFF',
 '#FF8000',
 '#80FF00',
 '#7F00FF',
 '#00FFFF',
 '#0080FF',
 '#80FF00',
 '#7F00FF',
 '#FFFF00',
 '#7F00FF',
 '#7F00FF',
 '#0080FF',
 '#7F00FF',
 '#0000FF',
 '#0000FF',
 '#0080FF',
 '#FF8000',
 '#FF0000',
 '#FF0000',
 '#FFFF00',
 '#7F00FF',
 '#00FF80',
 '#00FF80',
 '#FFFF00',
 '#00FFFF',
 '#00FF00',
 '#0000FF',
 '#FFFF00',
 '#0000FF',
 '#00FF80',
 '#80FF00',
 '#FF0000',
 '#FFFF00',
 '#0000FF',
 '#80FF00',
 '#7F00FF',
 '#0080FF',
 '#FFFF00',
 '#7F00FF',
 '#00FF80',
 '#FF0000',
 '#FF8000',
 '#FF0000',
 '#FFFF00',
 '#0000FF',
 '#7F00FF',
 '#00FF80',
 '#00FF00',
 '#FF8000',
 '#00FF80',
 '#FFFF00',
 '#FF0000',
 '#00FF00',
 '#0080FF',
 '#00FF80',
 '#00FF00',
 '#FF0000',
 '#0000FF',
 '#7F00FF',
 '#0080FF',
 '#0080FF',
 '#80FF00',
 '#FF8000',
 '#00FF00',
 '#0000FF',
 '#00FF00',
 '#7F00FF',
 '#80FF00',
 '#80FF00',
 '#0080FF',
 '#FF8000',
 '#00FF00',
 '#0000FF',
 '#0080FF',
 '#80FF00',
 '#FFFF00',
 '#FF0000',
 '#FF8000',
 '#00FF80',
 '#FF0000',
 '#0080FF',
 '#80FF00',
 '#FF0000',
 '#FF8000',
 '#FFFF00',
 '#0000FF',
 '#80FF00',
 '#FF0000',
 '#7F00FF',
 '#FFFF00',
 '#0080FF',
 '#00FF00',
 '#FFFF00',
 '#0080FF',
 '#00FF00',
 '#0080FF',
 '#00FF00',
 '#00FF00',
 '#7F00FF',
 '#7F00FF',
 '#0080FF',
 '#FF0000',
 '#00FFFF',
 '#0080FF',
 '#00FFFF',
 '#0080FF',
 '#00FFFF',
 '#FFFF00',
 '#FFFF00',
 '#80FF00',
 '#FFFF00',
 '#0000FF',
 '#FF0000',
 '#7F00FF',
 '#FFFF00',
 '#FF0000',
 '#80FF00',
 '#00FF80',
 '#0000FF',
 '#FF8000',
 '#7F00FF',
 '#0080FF',
 '#00FF80',
 '#80FF00',
 '#0080FF',
 '#FF8000',
 '#7F00FF',
 '#FF0000',
 '#FFFF00',
 '#FFFF00',
 '#00FF80',
 '#7F00FF',
 '#00FF80',
 '#00FF80',
 '#FFFF00',
 '#00FF00',
 '#00FFFF',
 '#FF8000',
 '#FF8000',
 '#FF8000',
 '#FF0000',
 '#00FFFF',
 '#80FF00',
 '#00FF80',
 '#00FF00',
 '#00FF80',
 '#00FF80',
 '#0000FF',
 '#FFFF00',
 '#FF0000',
 '#0000FF',
 '#FF8000',
 '#FFFF00',
 '#0000FF',
 '#00FF80',
 '#00FF80',
 '#0000FF',
 '#80FF00',
 '#00FF00',
 '#FFFF00',
 '#00FF00',
 '#FF0000',
 '#80FF00',
 '#0000FF',
 '#FF8000',
 '#0080FF',
 '#0000FF',
 '#FF0000',
 '#80FF00',
 '#FF0000',
 '#FF8000',
 '#0000FF',
 '#FFFF00',
 '#FF0000',
 '#80FF00',
 '#FF0000',
 '#FF0000',
 '#0080FF',
 '#00FF00',
 '#00FF80',
 '#0080FF',
 '#00FFFF',
 '#FF8000',
 '#FFFF00',
 '#0000FF',
 '#0000FF',
 '#0080FF',
 '#00FF00',
 '#00FF00',
 '#00FFFF',
 '#FFFF00',
 '#00FF00',
 '#80FF00',
 '#0080FF',
 '#00FF80',
 '#00FF00',
 '#00FF80',
 '#00FF00',
 '#00FF00',
 '#7F00FF',
 '#00FF80',
 '#FF8000',
 '#FF0000',
 '#FF0000',
 '#00FF80',
 '#80FF00',
 '#80FF00',
 '#00FFFF',
 '#FF0000',
 '#00FF00',
 '#FF0000',
 '#0080FF',
 '#0080FF',
 '#0000FF',
 '#7F00FF',
 '#00FFFF',
 '#00FFFF',
 '#7F00FF',
 '#00FF80',
 '#FF0000',
 '#00FF80',
 '#80FF00',
 '#00FFFF',
 '#00FFFF',
 '#0080FF',
 '#FF0000',
 '#0000FF',
 '#80FF00',
 '#00FF80',
 '#FF0000',
 '#80FF00',
 '#FF0000',
 '#00FF80',
 '#FF8000',
 '#80FF00',
 '#80FF00',
 '#0000FF',
 '#FF0000',
 '#FF8000',
 '#80FF00',
 '#80FF00',
 '#0000FF',
 '#FFFF00',
 '#00FFFF',
 '#0080FF',
 '#FFFF00',
 '#00FF80',
 '#00FF80',
 '#00FFFF',
 '#00FF80',
 '#FF8000',
 '#80FF00',
 '#00FFFF',
 '#FF0000',
 '#0000FF',
 '#00FF00',
 '#00FFFF',
 '#00FF80',
 '#FF0000',
 '#00FF00',
 '#0000FF',
 '#00FF00',
 '#00FF00',
 '#7F00FF',
 '#FFFF00',
 '#00FF00',
 '#00FF80',
 '#00FFFF',
 '#00FF80',
 '#0080FF',
 '#FF0000',
 '#0080FF',
 '#00FFFF',
 '#FF0000',
 '#0000FF',
 '#00FF80',
 '#80FF00',
 '#0080FF',
 '#FF0000',
 '#80FF00',
 '#FF0000',
 '#0000FF',
 '#7F00FF',
 '#0080FF',
 '#80FF00',
 '#00FF00',
 '#80FF00',
 '#FFFF00',
 '#0000FF',
 '#0080FF',
 '#7F00FF',
 '#80FF00',
 '#0000FF',
 '#00FFFF',
 '#00FF80',
 '#FFFF00',
 '#00FF80',
 '#0000FF',
 '#0000FF',
 '#FF0000',
 '#00FFFF',
 '#0000FF',
 '#80FF00',
 '#0000FF',
 '#0080FF',
 '#00FFFF',
 '#80FF00',
 '#00FF00',
 '#00FF00',
 '#7F00FF',
 '#FFFF00',
 '#00FF80',
 '#0080FF',
 '#FFFF00',
 '#FFFF00',
 '#FF8000',
 '#FF8000',
 ...]

In [112]:
freqc=colorbars.value_counts().reset_index().rename(columns={'index': 'x'})


---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-112-6b0c43966a83> in <module>()
----> 1 freqc=colorbars.value_counts().reset_index().rename(columns={'index': 'x'})

AttributeError: 'list' object has no attribute 'value_counts'

In [119]:
len(freq)

for i in range(len(freq)):


Out[119]:
10

In [117]:
for i in range(len(freq)):
    for j in range(len(freq)):
        if df[colnames[4]][i]==freq["x"][j]:
            if j<12:
                colorbars.append(colorbar[j])
            else:
                colorbars.append(colorbar[12])


Out[117]:
['#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0000FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 '#0080FF',
 ...]

In [121]:
colorbars[0:9]


Out[121]:
['#00FFFF',
 '#0000FF',
 '#FF0000',
 '#FFFF00',
 '#FF8000',
 '#0000FF',
 '#FF0000',
 '#FF0000',
 '#00FF00']

In [ ]: