In [55]:
import plotly
import plotly.plotly as py
from plotly.graph_objs import *
import pandas as pd
import math

In [7]:
plotly.tools.set_credentials_file(username='lis590dv', api_key='0jCaIttf2QaVJ3lRZZlK')

In [41]:
df2 = pd.read_csv('t3sample.csv',encoding='iso-8859-1')
df2.head()


Out[41]:
names dates latitude longitude categorical quant1 quant2 quant3
0 b'Rawad' 1453008863 -19.988651 -41.435565 Category01 1.933239 6.052785 6105.123120
1 b'Eurma' 1471778579 -8.593256 27.742604 Category00 1.520733 -11.065076 143.902725
2 b'Taleia' 1473613446 -67.463164 -109.366796 Category04 1.863466 11.437340 2019.370225
3 b'Niley' 1481194251 -7.537010 -32.218540 Category03 0.745431 19.415543 3225.920647
4 b'Acey' 1454402794 -17.116866 2.949914 Category05 1.031100 17.714492 4976.099324

In [ ]:
df2

In [20]:
def WhaleTeam(dataset):
    df=pd.read_csv(dataset,encoding='iso-8859-1')
    colnames=df2.columns.values
    nameslen=len(colnames)
    nameslen=nameslen-5
    
    subplot(2,2,1)
    data = Data([
    Scattermapbox(
        lat=df['stop_lat'],
        lon=df['stop_lon'],
        mode='markers',
        marker=Marker(
            size=9,
            color='#cc99ff'
        ),
        text=df['stop_name'],
    )
    ])
    layout = Layout(
        autosize=True,
        hovermode='closest',
        mapbox=dict(
            accesstoken=mapbox_access_token,
            bearing=0,
            center=dict(
                lat=40.11,
                lon=-88.23
            ),
            pitch=0,
            zoom=10
        ),
    )
    
    fig = dict(data=data, layout=layout)
    py.iplot(fig, filename='Multiple Mapbox')

In [21]:
WhaleTeam('t3sample.csv')


       names       dates   latitude   longitude categorical    quant1  \
0   b'Rawad'  1453008863 -19.988651  -41.435565  Category01  1.933239   
1   b'Eurma'  1471778579  -8.593256   27.742604  Category00  1.520733   
2  b'Taleia'  1473613446 -67.463164 -109.366796  Category04  1.863466   
3   b'Niley'  1481194251  -7.537010  -32.218540  Category03  0.745431   
4    b'Acey'  1454402794 -17.116866    2.949914  Category05  1.031100   

      quant2       quant3  
0   6.052785  6105.123120  
1 -11.065076   143.902725  
2  11.437340  2019.370225  
3  19.415543  3225.920647  
4  17.714492  4976.099324  

In [46]:
colnames=df2.columns.values

In [47]:
colnames


Out[47]:
array(['names', 'dates', 'latitude', 'longitude', 'categorical', 'quant1',
       'quant2', 'quant3'], dtype=object)

In [82]:
nameslen=len(colnames)

In [83]:
nameslen=nameslen-5

In [84]:
nameslen


Out[84]:
3

In [85]:
sqrt=math.sqrt(nameslen)

In [86]:
sqrt


Out[86]:
1.7320508075688772

In [87]:
wd=math.trunc(sqrt)

In [88]:
lg=wd+1

In [89]:
lg


Out[89]:
2

In [90]:
wd


Out[90]:
1

In [91]:
if lg*wd<nameslen:
    wd=wd+1

In [94]:
wd


Out[94]:
2

In [106]:
df2[colnames[4]]


Out[106]:
0       Category01
1       Category00
2       Category04
3       Category03
4       Category05
5       Category00
6       Category04
7       Category04
8       Category07
9       Category09
10      Category01
11      Category01
12      Category05
13      Category08
14      Category09
15      Category02
16      Category09
17      Category00
18      Category02
19      Category09
20      Category09
21      Category05
22      Category09
23      Category08
24      Category09
25      Category07
26      Category00
27      Category06
28      Category02
29      Category07
           ...    
9970    Category01
9971    Category02
9972    Category02
9973    Category08
9974    Category03
9975    Category03
9976    Category05
9977    Category03
9978    Category07
9979    Category02
9980    Category03
9981    Category02
9982    Category03
9983    Category05
9984    Category04
9985    Category05
9986    Category09
9987    Category00
9988    Category03
9989    Category00
9990    Category03
9991    Category06
9992    Category01
9993    Category02
9994    Category05
9995    Category05
9996    Category06
9997    Category00
9998    Category06
9999    Category09
Name: categorical, dtype: object

In [185]:
import plotly.plotly as py
from plotly.graph_objs import *
import pandas as pd

# read in volcano database data
#df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv')
df = pd.read_csv('t3sample.csv',encoding='iso-8859-1')
# frequency of Country
#freq = df
#freq = freq.Country.value_counts().reset_index().rename(columns={'index': 'x'})
freq=df[colnames[4]].value_counts().reset_index().rename(columns={'index': 'x'})
# plot(1) top 10 countries by total volcanoes
freqcol=freq.columns.values
locations = Bar(x=freq['x'][0:10],y=freq[freqcol[1]][0:10], marker=dict(color='#CF1020'))

# read in 3d volcano surface data
#df_v = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv')

# plot(2) 3d surface of volcano
#threed = Surface(z=df_v.values.tolist(), colorscale='Reds', showscale=False)
#logsizes=[]
#for i in range(len(df[colnames[4]])):
#    logsize=math.log10(float(df[colnames[5]][i]))
#    logsize=logsize*1.5
#    logsizes.append(logsize)

# plot(3)  scattergeo map of volcano locations
trace3 = {
  "geo": "geo3", 
  "lon": df[colnames[3]],
  "lat": df[colnames[2]],
  "hoverinfo": 'text',
  "marker": {
    "size": 5,
    "opacity": 0.8,
    "color": '#CF1020',
    "colorscale": 'Viridis'
  }, 
  "mode": "markers", 
  "type": "scattergeo"
}

data = Data([locations, trace3])

# control the subplot below using domain in 'geo', 'scene', and 'axis'
layout = {
  "plot_bgcolor": 'black',
  "paper_bgcolor": 'black',
  "titlefont": {
      "size": 20,
      "family": "Raleway"
  },
  "font": {
      "color": 'white'
  },
  "dragmode": "zoom", 
  "geo3": {
    "domain": {
      "x": [0, 0.55], 
      "y": [0, 0.9]
    }, 
    "lakecolor": "rgba(127,205,255,1)",
    "oceancolor": "rgb(6,66,115)",
    "landcolor": 'white',
    "projection": {"type": "orthographic"}, 
    "scope": "world", 
    "showlakes": True,
    "showocean": True,
    "showland": True,
    "bgcolor": 'black'
  }, 
  "margin": {
    "r": 10, 
    "t": 25, 
    "b": 40, 
    "l": 60
  }, 
  "scene": {"domain": {
      "x": [0.5, 1], 
      "y": [0, 0.55]
    },
           "xaxis": {"gridcolor": 'white'},
           "yaxis": {"gridcolor": 'white'},
           "zaxis": {"gridcolor": 'white'}
           }, 
  "showlegend": False, 
  "title": "<br>Volcano Database", 
  "xaxis": {
    "anchor": "y", 
    "domain": [0.6, 0.95]
  }, 
  "yaxis": {
    "anchor": "x", 
    "domain": [0.1, 0.9],
    "showgrid": False
  }
}

annotations = { "text": "Histrogram of %s" % colnames[5],
               "showarrow": False,
               "xref": "paper",
               "yref": "paper",
               "x": 0.85,
               "y": 0.95}

layout['annotations'] = [annotations]

fig = Figure(data=data, layout=layout)
py.iplot(fig, filename = "Mixed Subplots Volcano")


Out[185]:

In [111]:
freq


Out[111]:
x Country
0 United States 184
1 Russia 169
2 Indonesia 136
3 Japan 111
4 Chile 87
5 Ethiopia 57
6 Papua New Guinea 54
7 Philippines 49
8 Mexico 41
9 Iceland 38
10 Antarctica 35
11 Ecuador 34
12 Argentina 34
13 Pacific Ocean 33
14 New Zealand 30
15 Kenya 22
16 El Salvador 22
17 Guatemala 22
18 Canada 21
19 Tonga 20
20 Nicaragua 19
21 Peru 16
22 Vanuatu 14
23 China 14
24 Italy 14
25 Portugal 14
26 Colombia 14
27 Turkey 13
28 Atlantic Ocean 12
29 Bolivia 11
... ... ...
66 Panama 2
67 South Korea 2
68 India 2
69 Arctic Ocean 2
70 Samoa 2
71 French Southern & Antarctic Lands 2
72 Bouvet I. 1
73 Heard I. & McDonald Is. 1
74 St. Kitts & Nevis 1
75 Sweden 1
76 Martinique 1
77 United Kingdom 1
78 Guadeloupe 1
79 Germany 1
80 Jan Mayen 1
81 Reunion 1
82 Australia 1
83 Rwanda 1
84 American Samoa 1
85 Montserrat 1
86 Grenada 1
87 Malaysia 1
88 Mali 1
89 Wallis & Futuna 1
90 South Africa 1
91 St. Lucia 1
92 Nigeria 1
93 Sao Tome & Principe 1
94 St. Vincent & the Grenadines 1
95 Trinidad 1

96 rows × 2 columns


In [115]:
#freq = freq.Country.value_counts().reset_index().rename(columns={'index': 'x'})

df2freq=df2[colnames[4]].value_counts().reset_index().rename(columns={'index': 'x'})

In [117]:
df2freq


Out[117]:
x categorical
0 Category04 1077
1 Category05 1038
2 Category03 1033
3 Category02 1024
4 Category07 1016
5 Category06 998
6 Category01 972
7 Category08 955
8 Category00 954
9 Category09 933

In [126]:
freqcol=df2freq.columns.values
df2freq[freqcol[1]][0:10]


Out[126]:
0    1077
1    1038
2    1033
3    1024
4    1016
5     998
6     972
7     955
8     954
9     933
Name: categorical, dtype: int64

In [124]:
freqcol=df2freq.columns.values

In [125]:
freqcol[1]


Out[125]:
'categorical'

In [168]:
import plotly.plotly as py
from plotly.graph_objs import *
import pandas as pd

# read in volcano database data
#df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv')
df = pd.read_csv('DiscGrants96to13-2017_04_10_19_27_08.csv',encoding='iso-8859-1',sep='\t')
# frequency of Country
#freq = df
#freq = freq.Country.value_counts().reset_index().rename(columns={'index': 'x'})
freq=df['InstState'].value_counts().reset_index().rename(columns={'index': 'x'})
# plot(1) top 10 countries by total volcanoes
freqcol=freq.columns.values
locations = Bar(x=freq['x'][0:10],y=freq[freqcol[1]][0:10], marker=dict(color='#CF1020'))

# read in 3d volcano surface data
df_v = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv')

# plot(2) 3d surface of volcano
threed = Surface(z=df_v.values.tolist(), colorscale='Reds', showscale=False)
#threed = Bar(x=freq['x'][0:10],y=freq[freqcol[1]][0:10], marker=dict(color='#CF1020'))


# plot(3)  scattergeo map of volcano locations
trace3 = {
  "geo": "geo3", 
  "lon": df['Longitude'],
  "lat": df['Latitude'],
  "hoverinfo": 'text',
  "marker": {
    "symbol":"circle",
    "size": logsizes,
    "opacity": 0.05,
    "color": '#FF9999',
    "colorscale": 'Viridis'
    #"line": {
    #    "width":0,
    #},
  }, 
  "mode": "markers", 
  "type": "scattergeo"
}

data = Data([locations, trace3])

# control the subplot below using domain in 'geo', 'scene', and 'axis'
layout = {
  "plot_bgcolor": 'black',
  "paper_bgcolor": 'black',
  "titlefont": {
      "size": 20,
      "family": "Raleway"
  },
  "font": {
      "color": 'white'
  },
  "dragmode": "zoom", 
  "geo3": {
    "domain": {
      "x": [0, 0.55], 
      "y": [0, 0.9]
    }, 
    "lakecolor": "rgba(127,205,255,1)",
    "oceancolor": "rgb(6,66,115)",
    "landcolor": 'white',
    "projection": {"type": "orthographic"}, 
    "scope": "world", 
    "showlakes": True,
    "showocean": True,
    "showland": True,
    "bgcolor": 'black'
  }, 
  "margin": {
    "r": 10, 
    "t": 25, 
    "b": 40, 
    "l": 60
  }, 
  "scene": {"domain": {
      "x": [0.5, 1], 
      "y": [0, 0.55]
    },
           "xaxis": {"gridcolor": 'white'},
           "yaxis": {"gridcolor": 'white'},
           "zaxis": {"gridcolor": 'white'}
           }, 
  "showlegend": False, 
  "title": "<br>Volcano Database", 
  "xaxis": {
    "anchor": "y", 
    "domain": [0.6, 0.95]
  }, 
  "yaxis": {
    "anchor": "x", 
    "domain": [0, 0.95],
    "showgrid": False
  }
}

annotations = { "text": "Source: NOAA",
               "showarrow": False,
               "xref": "paper",
               "yref": "paper",
               "x": 0,
               "y": 0}

layout['annotations'] = [annotations]

fig = Figure(data=data, layout=layout)
py.iplot(fig, filename = "Mixed Subplots Volcano")


Out[168]:

In [151]:
logsizes=[]
for i in range(len(df['AwardTotal'])):
    logsize=math.log10(df['AwardTotal'][i])
    logsize=logsize*1.5
    logsizes.append(logsize)

In [141]:
logsizes


Out[141]:
[3.530199698203082,
 3.780317312140151,
 3.780317312140151,
 3.8027737252919755,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.8027737252919755,
 3.791690649020118,
 3.5415792439465807,
 3.780317312140151,
 3.7686381012476144,
 3.7686381012476144,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.530199698203082,
 3.530199698203082,
 3.791690649020118,
 3.791690649020118,
 3.791690649020118,
 3.780317312140151,
 3.5185139398778875,
 3.780317312140151,
 3.780317312140151,
 3.7686381012476144,
 3.5185139398778875,
 3.8027737252919755,
 3.7686381012476144,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.8027737252919755,
 3.8027737252919755,
 3.780317312140151,
 3.7686381012476144,
 3.780317312140151,
 3.791690649020118,
 3.530199698203082,
 3.780317312140151,
 3.5415792439465807,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.7686381012476144,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.7686381012476144,
 3.780317312140151,
 3.530199698203082,
 3.780317312140151,
 3.530199698203082,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.791690649020118,
 3.8027737252919755,
 3.530199698203082,
 3.530199698203082,
 3.7686381012476144,
 3.7686381012476144,
 3.7686381012476144,
 3.780317312140151,
 3.791690649020118,
 3.780317312140151,
 3.780317312140151,
 3.5415792439465807,
 3.7686381012476144,
 3.530199698203082,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.791690649020118,
 3.5415792439465807,
 3.8027737252919755,
 3.8027737252919755,
 3.780317312140151,
 3.7686381012476144,
 3.780317312140151,
 3.5185139398778875,
 3.8027737252919755,
 3.8027737252919755,
 3.530199698203082,
 3.780317312140151,
 3.791690649020118,
 3.7686381012476144,
 3.780317312140151,
 3.530199698203082,
 3.791690649020118,
 3.5185139398778875,
 3.5185139398778875,
 3.780317312140151,
 3.5415792439465807,
 3.780317312140151,
 3.791690649020118,
 3.8027737252919755,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.7686381012476144,
 3.780317312140151,
 3.530199698203082,
 3.791690649020118,
 3.5185139398778875,
 3.5185139398778875,
 3.530199698203082,
 3.7686381012476144,
 3.780317312140151,
 3.5415792439465807,
 3.530199698203082,
 3.530199698203082,
 3.780317312140151,
 3.530199698203082,
 3.8027737252919755,
 3.780317312140151,
 3.791690649020118,
 3.780317312140151,
 3.780317312140151,
 3.791690649020118,
 3.780317312140151,
 3.780317312140151,
 3.5514499979728753,
 3.791690649020118,
 3.791690649020118,
 3.7686381012476144,
 3.780317312140151,
 3.780317312140151,
 3.791690649020118,
 3.791690649020118,
 3.791690649020118,
 3.791690649020118,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.7686381012476144,
 3.791690649020118,
 3.780317312140151,
 3.530199698203082,
 3.7686381012476144,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.780317312140151,
 3.8027737252919755,
 3.8041394323353503,
 3.5717088318086874,
 3.561101383649056,
 3.8041394323353503,
 3.561101383649056,
 3.8041394323353503,
 3.8041394323353503,
 3.5717088318086874,
 3.814913181275074,
 3.561101383649056,
 3.5717088318086874,
 3.814913181275074,
 3.8041394323353503,
 3.8254261177678233,
 3.79309160017658,
 3.561101383649056,
 3.8041394323353503,
 3.5717088318086874,
 3.814913181275074,
 3.5717088318086874,
 3.79309160017658,
 3.8041394323353503,
 3.79309160017658,
 3.8041394323353503,
 3.79309160017658,
 3.814913181275074,
 3.582063362911709,
 3.8041394323353503,
 3.8041394323353503,
 3.79309160017658,
 3.79309160017658,
 3.8041394323353503,
 3.79309160017658,
 3.5717088318086874,
 3.8041394323353503,
 3.814913181275074,
 3.5717088318086874,
 3.8254261177678233,
 3.8041394323353503,
 3.79309160017658,
 3.5717088318086874,
 3.5717088318086874,
 3.8041394323353503,
 3.8041394323353503,
 3.814913181275074,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.5717088318086874,
 3.79309160017658,
 3.8041394323353503,
 3.582063362911709,
 3.5717088318086874,
 3.582063362911709,
 3.5717088318086874,
 3.8254261177678233,
 3.8041394323353503,
 3.5717088318086874,
 3.8041394323353503,
 3.8041394323353503,
 3.5717088318086874,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.5717088318086874,
 3.561101383649056,
 3.79309160017658,
 3.8041394323353503,
 3.561101383649056,
 3.8041394323353503,
 3.8041394323353503,
 3.79309160017658,
 3.8041394323353503,
 3.5717088318086874,
 3.8041394323353503,
 3.5717088318086874,
 3.5717088318086874,
 3.8254261177678233,
 3.8254261177678233,
 3.8254261177678233,
 3.814913181275074,
 3.561101383649056,
 3.5717088318086874,
 3.814913181275074,
 3.8041394323353503,
 3.8254261177678233,
 3.814913181275074,
 3.814913181275074,
 3.5921767573958667,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8254261177678233,
 3.79309160017658,
 3.5717088318086874,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.582063362911709,
 3.8041394323353503,
 3.8041394323353503,
 3.8254261177678233,
 3.814913181275074,
 3.8041394323353503,
 3.814913181275074,
 3.8254261177678233,
 3.8041394323353503,
 3.8254261177678233,
 3.5717088318086874,
 3.561101383649056,
 3.5717088318086874,
 3.814913181275074,
 3.8041394323353503,
 3.5717088318086874,
 3.582063362911709,
 3.561101383649056,
 3.814913181275074,
 3.814913181275074,
 3.814913181275074,
 3.79309160017658,
 3.8041394323353503,
 3.79309160017658,
 3.8254261177678233,
 3.8041394323353503,
 3.8041394323353503,
 3.5717088318086874,
 3.8041394323353503,
 3.582063362911709,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.79309160017658,
 3.814913181275074,
 3.8254261177678233,
 3.582063362911709,
 3.582063362911709,
 3.5717088318086874,
 3.79309160017658,
 3.8041394323353503,
 3.8041394323353503,
 3.582063362911709,
 3.8041394323353503,
 3.79309160017658,
 3.8041394323353503,
 3.5717088318086874,
 3.5717088318086874,
 3.8041394323353503,
 3.79309160017658,
 3.8041394323353503,
 3.8041394323353503,
 3.79309160017658,
 3.79309160017658,
 3.561101383649056,
 3.561101383649056,
 3.814913181275074,
 3.8041394323353503,
 3.8041394323353503,
 3.5921767573958667,
 3.8041394323353503,
 3.5717088318086874,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.5717088318086874,
 3.5717088318086874,
 3.8041394323353503,
 3.561101383649056,
 3.8041394323353503,
 3.79309160017658,
 3.8254261177678233,
 3.814913181275074,
 3.582063362911709,
 3.561101383649056,
 3.8041394323353503,
 3.5717088318086874,
 3.8041394323353503,
 3.814913181275074,
 3.8254261177678233,
 3.8041394323353503,
 3.8041394323353503,
 3.5717088318086874,
 3.8041394323353503,
 3.814913181275074,
 3.8041394323353503,
 3.814913181275074,
 3.561101383649056,
 3.582063362911709,
 3.79309160017658,
 3.8041394323353503,
 3.8254261177678233,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.582063362911709,
 3.5717088318086874,
 3.8041394323353503,
 3.8041394323353503,
 3.8254261177678233,
 3.5717088318086874,
 3.79309160017658,
 3.8041394323353503,
 3.79309160017658,
 3.8041394323353503,
 3.5717088318086874,
 3.8041394323353503,
 3.8041394323353503,
 3.5717088318086874,
 3.5717088318086874,
 3.5921767573958667,
 3.8041394323353503,
 3.8254261177678233,
 3.814913181275074,
 3.8041394323353503,
 3.8254261177678233,
 3.5717088318086874,
 3.8041394323353503,
 3.79309160017658,
 3.8254261177678233,
 3.8041394323353503,
 3.814913181275074,
 3.5717088318086874,
 3.5717088318086874,
 3.8254261177678233,
 3.79309160017658,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.8041394323353503,
 3.814913181275074,
 3.814913181275074,
 3.8041394323353503,
 3.5717088318086874,
 3.5717088318086874,
 3.8041394323353503,
 3.561101383649056,
 3.814913181275074,
 3.5717088318086874,
 3.5717088318086874,
 3.79309160017658,
 3.582063362911709,
 3.814913181275074,
 3.8041394323353503,
 3.814913181275074,
 3.8041394323353503,
 3.814913181275074,
 3.814913181275074,
 3.561101383649056,
 3.8041394323353503,
 3.561101383649056,
 3.8041394323353503,
 3.79309160017658,
 3.79309160017658,
 3.814913181275074,
 3.814913181275074,
 3.8041394323353503,
 3.8041394323353503,
 3.8254261177678233,
 3.79309160017658,
 3.582063362911709,
 3.8254261177678233,
 3.561101383649056,
 3.8041394323353503,
 3.8041394323353503,
 3.79309160017658,
 3.5717088318086874,
 3.814913181275074,
 3.79309160017658,
 3.79309160017658,
 3.814913181275074,
 3.5717088318086874,
 3.8041394323353503,
 3.561101383649056,
 3.8041394323353503,
 3.814913181275074,
 3.561101383649056,
 3.8041394323353503,
 3.582063362911709,
 3.814913181275074,
 3.814913181275074,
 3.8790958795000727,
 3.89707700320942,
 3.888179493918325,
 3.8790958795000727,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.888179493918325,
 3.888179493918325,
 3.89707700320942,
 3.888179493918325,
 3.8790958795000727,
 3.89707700320942,
 3.663700925389648,
 3.8790958795000727,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.888179493918325,
 3.655138434811382,
 3.655138434811382,
 3.888179493918325,
 3.663700925389648,
 3.89707700320942,
 3.888179493918325,
 3.888179493918325,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.8790958795000727,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.663700925389648,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.8790958795000727,
 3.663700925389648,
 3.655138434811382,
 3.888179493918325,
 3.89707700320942,
 3.663700925389648,
 3.888179493918325,
 3.655138434811382,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.6464037262230695,
 3.888179493918325,
 3.888179493918325,
 3.888179493918325,
 3.888179493918325,
 3.888179493918325,
 3.8790958795000727,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.8790958795000727,
 3.8790958795000727,
 3.663700925389648,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.888179493918325,
 3.8790958795000727,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.8790958795000727,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.663700925389648,
 3.89707700320942,
 3.655138434811382,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.6464037262230695,
 3.663700925389648,
 3.89707700320942,
 3.888179493918325,
 3.888179493918325,
 3.888179493918325,
 3.89707700320942,
 3.8790958795000727,
 3.89707700320942,
 3.6464037262230695,
 3.888179493918325,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.663700925389648,
 3.888179493918325,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.89707700320942,
 3.655138434811382,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.888179493918325,
 3.663700925389648,
 3.89707700320942,
 3.655138434811382,
 3.89707700320942,
 3.655138434811382,
 3.888179493918325,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.663700925389648,
 3.888179493918325,
 3.888179493918325,
 3.89707700320942,
 3.888179493918325,
 3.655138434811382,
 3.89707700320942,
 3.89707700320942,
 3.8790958795000727,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.663700925389648,
 3.663700925389648,
 3.89707700320942,
 3.655138434811382,
 3.655138434811382,
 3.663700925389648,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.655138434811382,
 3.663700925389648,
 3.663700925389648,
 3.8790958795000727,
 3.663700925389648,
 3.8790958795000727,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.6464037262230695,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.663700925389648,
 3.663700925389648,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.6464037262230695,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.888179493918325,
 3.663700925389648,
 3.89707700320942,
 3.655138434811382,
 3.89707700320942,
 3.89707700320942,
 3.6464037262230695,
 3.888179493918325,
 3.888179493918325,
 3.655138434811382,
 3.6464037262230695,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.89707700320942,
 3.8790958795000727,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.663700925389648,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.89707700320942,
 3.655138434811382,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.655138434811382,
 3.89707700320942,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.89707700320942,
 3.655138434811382,
 3.89707700320942,
 3.89707700320942,
 3.655138434811382,
 3.888179493918325,
 3.6464037262230695,
 3.89707700320942,
 3.8790958795000727,
 3.89707700320942,
 3.6464037262230695,
 3.89707700320942,
 3.8790958795000727,
 3.663700925389648,
 3.8790958795000727,
 3.89707700320942,
 3.8790958795000727,
 3.8790958795000727,
 3.655138434811382,
 3.6464037262230695,
 3.663700925389648,
 3.655138434811382,
 3.888179493918325,
 3.663700925389648,
 3.8790958795000727,
 3.89707700320942,
 3.8790958795000727,
 3.663700925389648,
 3.6464037262230695,
 3.89707700320942,
 3.89707700320942,
 3.655138434811382,
 3.888179493918325,
 3.663700925389648,
 3.655138434811382,
 3.655138434811382,
 3.89707700320942,
 3.8790958795000727,
 3.663700925389648,
 3.89707700320942,
 3.663700925389648,
 3.663700925389648,
 3.89707700320942,
 3.6464037262230695,
 3.8790958795000727,
 3.89707700320942,
 3.888179493918325,
 3.89707700320942,
 3.663700925389648,
 3.888179493918325,
 3.89707700320942,
 3.655138434811382,
 3.888179493918325,
 3.8790958795000727,
 3.8790958795000727,
 3.89707700320942,
 3.89707700320942,
 5.90687353472207,
 6.2040931098534715,
 6.2057455409426625,
 3.8135809885681917,
 3.786041210242554,
 3.513217600067939,
 3.8135809885681917,
 3.756636108245848,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.756636108245848,
 3.8135809885681917,
 3.786041210242554,
 3.756636108245848,
 3.786041210242554,
 3.786041210242554,
 3.8135809885681917,
 3.756636108245848,
 3.786041210242554,
 3.8135809885681917,
 3.756636108245848,
 3.786041210242554,
 3.8135809885681917,
 3.513217600067939,
 3.786041210242554,
 3.756636108245848,
 3.513217600067939,
 3.513217600067939,
 3.756636108245848,
 3.8135809885681917,
 3.5634810853944106,
 3.786041210242554,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.786041210242554,
 3.8135809885681917,
 3.756636108245848,
 3.8135809885681917,
 3.756636108245848,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.786041210242554,
 3.756636108245848,
 3.5634810853944106,
 3.5634810853944106,
 3.8135809885681917,
 3.8135809885681917,
 3.756636108245848,
 3.8135809885681917,
 3.5634810853944106,
 3.8135809885681917,
 3.756636108245848,
 3.8135809885681917,
 3.756636108245848,
 3.786041210242554,
 3.5634810853944106,
 3.786041210242554,
 3.8135809885681917,
 3.786041210242554,
 3.756636108245848,
 3.786041210242554,
 3.5634810853944106,
 3.756636108245848,
 3.756636108245848,
 3.8135809885681917,
 3.786041210242554,
 3.5634810853944106,
 3.8135809885681917,
 3.513217600067939,
 3.786041210242554,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.786041210242554,
 3.756636108245848,
 3.756636108245848,
 3.8135809885681917,
 3.5634810853944106,
 3.8135809885681917,
 3.513217600067939,
 3.756636108245848,
 3.786041210242554,
 3.786041210242554,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.786041210242554,
 3.5634810853944106,
 3.8135809885681917,
 3.8135809885681917,
 3.5634810853944106,
 3.8135809885681917,
 3.8135809885681917,
 3.756636108245848,
 3.786041210242554,
 3.8135809885681917,
 3.756636108245848,
 3.8135809885681917,
 3.5634810853944106,
 3.8135809885681917,
 3.756636108245848,
 3.756636108245848,
 3.8135809885681917,
 3.8135809885681917,
 3.786041210242554,
 3.8135809885681917,
 3.5634810853944106,
 3.8135809885681917,
 3.756636108245848,
 3.8135809885681917,
 3.786041210242554,
 3.786041210242554,
 3.756636108245848,
 3.8135809885681917,
 3.5634810853944106,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.786041210242554,
 3.8135809885681917,
 3.8135809885681917,
 3.8135809885681917,
 3.5185139398778875,
 3.7528164311882715,
 3.780317312140151,
 3.7641761323903307,
 3.7234556720351857,
 3.7528164311882715,
 3.780317312140151,
 3.780317312140151,
 3.530199698203082,
 3.530199698203082,
 3.7528164311882715,
 3.780317312140151,
 3.530199698203082,
 3.7234556720351857,
 3.711807229041191,
 3.780317312140151,
 3.780317312140151,
 3.7234556720351857,
 3.780317312140151,
 3.7234556720351857,
 3.734799829588847,
 3.4800069429571505,
 3.7686381012476144,
 3.780317312140151,
 3.780317312140151,
 3.741151598851785,
 3.7528164311882715,
 3.741151598851785,
 3.530199698203082,
 3.780317312140151,
 3.780317312140151,
 3.5185139398778875,
 3.7234556720351857,
 3.5415792439465807,
 3.7528164311882715,
 3.5185139398778875,
 3.530199698203082,
 3.7528164311882715,
 3.5185139398778875,
 3.7234556720351857,
 3.780317312140151,
 3.780317312140151,
 3.7528164311882715,
 3.780317312140151,
 3.530199698203082,
 3.780317312140151,
 3.7686381012476144,
 3.4683473304121573,
 3.5185139398778875,
 3.780317312140151,
 3.5415792439465807,
 3.780317312140151,
 3.734799829588847,
 3.7234556720351857,
 3.530199698203082,
 3.7641761323903307,
 3.791690649020118,
 3.530199698203082,
 3.4800069429571505,
 3.780317312140151,
 3.780317312140151,
 3.734799829588847,
 3.7234556720351857,
 3.745855195173729,
 3.7686381012476144,
 3.745855195173729,
 3.530199698203082,
 3.734799829588847,
 3.780317312140151,
 3.5415792439465807,
 3.780317312140151,
 3.780317312140151,
 3.7528164311882715,
 3.7528164311882715,
 3.4913616938342726,
 3.780317312140151,
 3.7234556720351857,
 3.780317312140151,
 ...]

In [137]:
df['AwardTotal']


Out[137]:
0          3390.0
1          6030.0
2          6030.0
3          6350.0
4          6030.0
5          6030.0
6          6030.0
7          6350.0
8          6190.0
9          3480.0
10         6030.0
11         5870.0
12         5870.0
13         6030.0
14         6030.0
15         6030.0
16         3390.0
17         3390.0
18         6190.0
19         6190.0
20         6190.0
21         6030.0
22         3300.0
23         6030.0
24         6030.0
25         5870.0
26         3300.0
27         6350.0
28         5870.0
29         6030.0
           ...   
13170     57197.0
13171    131000.0
13172    823016.0
13173    139762.0
13174    328329.0
13175     59100.0
13176    149983.0
13177    129000.0
13178    249837.0
13179    150000.0
13180    499710.0
13181    148150.0
13182    149996.0
13183    212367.0
13184    239443.0
13185    222623.0
13186     98908.0
13187    166500.0
13188    135000.0
13189    505826.0
13190    150000.0
13191    883171.0
13192    646720.0
13193    141500.0
13194    150000.0
13195    140341.0
13196     52329.0
13197    673344.0
13198    150000.0
13199     64594.0
Name: AwardTotal, dtype: float64