In [1]:
%matplotlib inline
import os
import yt
yt.mylog.setLevel("WARNING")
import numpy as np
import matplotlib
matplotlib.rcParams['font.family'] = 'stixgeneral'
matplotlib.rcParams['figure.dpi'] = 150
import matplotlib.pyplot as plt

In [2]:
from yt_conduction_fields import *

In [ ]:
from yt.fields.derived_field import ValidateSpatial
from yt.funcs import just_one

@yt.derived_field('xray_cooling_time', sampling_type='cell', units='Myr')
def _xray_cooling_time(field, data):
    xray_emis = ('gas', 'xray_emissivity_0.1_100_keV')
    if xray_emis not in data.ds.derived_field_list:
        xray_fields = yt.add_xray_emissivity_field(data.ds, 0.1, 100, table_type='apec', metallicity=0.5)
    gamma = 5./3.
    thermal_energy = 1./(gamma-1)*data['pressure']
    return thermal_energy/data[xray_emis]

@yt.derived_field('total_heating_rate_density', sampling_type='cell', units='erg/s/cm**3')
def _total_heating_rate_density(field, data):
    xray_emis = ('gas', 'xray_emissivity_0.1_100_keV')
    if xray_emis not in data.ds.derived_field_list:
        xray_fields = yt.add_xray_emissivity_field(data.ds, 0.1, 100, table_type='apec', metallicity=0.5)
    return - data['spitzer_heat_flux_divergence'] - data[xray_emis]

@yt.derived_field('spitzer_conduction_coefficient', sampling_type='cell', units='cm**2/s')
def _spitzer_conduction_coefficient(field, data):
    T1 = data['temperature'].to_equivalent('keV', 'thermal')/10/yt.units.keV
    n = data['H_nuclei_density']/1E-3/yt.units.cm**(-3)
    return 4E32*T1**2.5/n*yt.units.cm**2*yt.units.s**(-1)

def _spitzer_heat_flux(ax):
    def func(field, data):
        return -data['spitzer_conduction_coefficient']*yt.physical_constants.kb*data['H_nuclei_density']*data['temperature_gradient_%s' % ax]
    return func

for ax in 'xyz':
    f = _spitzer_heat_flux(ax)
    yt.add_field('spitzer_heat_flux_%s' % ax, function=f, sampling_type='cell', units='erg/s/cm**2')
    

basename = 'spitzer_heat_flux'
xn = basename + '_x'
yn = basename + '_y'
zn = basename + '_z'

sl_left = slice(None, -2, None)
sl_right = slice(2, None, None)

div_fac = 2


def _divergence(field, data):
    ds = div_fac * just_one(data["index", "dx"])
    f  = data[xn][sl_right,1:-1,1:-1]/ds
    f -= data[xn][sl_left ,1:-1,1:-1]/ds
    ds = div_fac * just_one(data["index", "dy"])
    f += data[yn][1:-1,sl_right,1:-1]/ds
    f -= data[yn][1:-1,sl_left ,1:-1]/ds
    ds = div_fac * just_one(data["index", "dz"])
    f += data[zn][1:-1,1:-1,sl_right]/ds
    f -= data[zn][1:-1,1:-1,sl_left ]/ds
    new_field = data.ds.arr(np.zeros(data[xn].shape, dtype=np.float64),
                            f.units)        
    new_field[1:-1,1:-1,1:-1] = f
    return new_field


yt.add_field(('gas', "%s_divergence" % basename), sampling_type="cell", 
                   function=_divergence,
                   units='erg/s/cm**3',
                   validators=[ValidateSpatial(2)])

def _spitzer_heating_rate(field, data):
    return -data[('gas', 'spitzer_heat_flux_divergence')]*data[('gas', 'cell_volume')]

yt.add_field(('gas', 'spitzer_heating_rate'), sampling_type="cell", 
                   function=_spitzer_heating_rate,
                   units='erg/s')

def _total_heating_rate(field, data):
    return -data[('gas', 'total_heating_rate_density')]*data[('gas', 'cell_volume')]

yt.add_field(('gas', 'total_heating_rate'), sampling_type="cell", 
                   function=_total_heating_rate,
                   units='erg/s')

def _total_cooling_time(field, data):
    gamma = 5./3.
    thermal_energy = 1./(gamma-1)*data['pressure']
    return thermal_energy/(-data['total_heating_rate'])

yt.add_field(('gas', 'total_cooling_time'), sampling_type="cell", 
                   function=_total_cooling_time,
                   units='Myr')

In [3]:
ds = yt.load('/home/ychen/data/0only_1022_h1_10Myr/data/MHD_Jet_10Myr_hdf5_plt_cnt_1700')
sp = ds.sphere([0,0,0], (180, 'kpc'))

ds.derived_field_list


Out[3]:
[('all', 'mesh_id'),
 ('all', 'particle_blk'),
 ('all', 'particle_cylindrical_velocity_theta'),
 ('all', 'particle_cylindrical_velocity_z'),
 ('all', 'particle_den0'),
 ('all', 'particle_dens'),
 ('all', 'particle_gamc'),
 ('all', 'particle_index'),
 ('all', 'particle_jet'),
 ('all', 'particle_magx'),
 ('all', 'particle_magy'),
 ('all', 'particle_magz'),
 ('all', 'particle_ones'),
 ('all', 'particle_position'),
 ('all', 'particle_position_cylindrical_radius'),
 ('all', 'particle_position_cylindrical_theta'),
 ('all', 'particle_position_cylindrical_z'),
 ('all', 'particle_position_relative'),
 ('all', 'particle_position_relative_x'),
 ('all', 'particle_position_relative_y'),
 ('all', 'particle_position_relative_z'),
 ('all', 'particle_position_spherical_phi'),
 ('all', 'particle_position_spherical_radius'),
 ('all', 'particle_position_spherical_theta'),
 ('all', 'particle_position_x'),
 ('all', 'particle_position_y'),
 ('all', 'particle_position_z'),
 ('all', 'particle_posx'),
 ('all', 'particle_posy'),
 ('all', 'particle_posz'),
 ('all', 'particle_proc'),
 ('all', 'particle_radial_velocity'),
 ('all', 'particle_radius'),
 ('all', 'particle_shok'),
 ('all', 'particle_specific_angular_momentum'),
 ('all', 'particle_specific_angular_momentum_x'),
 ('all', 'particle_specific_angular_momentum_y'),
 ('all', 'particle_specific_angular_momentum_z'),
 ('all', 'particle_spherical_position_phi'),
 ('all', 'particle_spherical_position_radius'),
 ('all', 'particle_spherical_position_theta'),
 ('all', 'particle_spherical_velocity_phi'),
 ('all', 'particle_spherical_velocity_radius'),
 ('all', 'particle_spherical_velocity_theta'),
 ('all', 'particle_tadd'),
 ('all', 'particle_tag'),
 ('all', 'particle_tau'),
 ('all', 'particle_velocity'),
 ('all', 'particle_velocity_cylindrical_radius'),
 ('all', 'particle_velocity_cylindrical_theta'),
 ('all', 'particle_velocity_cylindrical_z'),
 ('all', 'particle_velocity_magnitude'),
 ('all', 'particle_velocity_relative'),
 ('all', 'particle_velocity_relative_x'),
 ('all', 'particle_velocity_relative_y'),
 ('all', 'particle_velocity_relative_z'),
 ('all', 'particle_velocity_spherical_phi'),
 ('all', 'particle_velocity_spherical_radius'),
 ('all', 'particle_velocity_spherical_theta'),
 ('all', 'particle_velocity_x'),
 ('all', 'particle_velocity_y'),
 ('all', 'particle_velocity_z'),
 ('all', 'particle_velx'),
 ('all', 'particle_vely'),
 ('all', 'particle_velz'),
 ('deposit', 'all_count'),
 ('deposit', 'io_count'),
 ('flash', 'cell_volume'),
 ('flash', 'dens'),
 ('flash', 'dx'),
 ('flash', 'dy'),
 ('flash', 'dz'),
 ('flash', 'jet '),
 ('flash', 'magx'),
 ('flash', 'magy'),
 ('flash', 'magz'),
 ('flash', 'path_element_x'),
 ('flash', 'path_element_y'),
 ('flash', 'path_element_z'),
 ('flash', 'pres'),
 ('flash', 'temp'),
 ('flash', 'velx'),
 ('flash', 'vely'),
 ('flash', 'velz'),
 ('flash', 'vertex_x'),
 ('flash', 'vertex_y'),
 ('flash', 'vertex_z'),
 ('flash', 'x'),
 ('flash', 'y'),
 ('flash', 'z'),
 ('gas', 'H_nuclei_density'),
 ('gas', 'He_nuclei_density'),
 ('gas', 'alfven_speed'),
 ('gas', 'angular_momentum_magnitude'),
 ('gas', 'angular_momentum_x'),
 ('gas', 'angular_momentum_y'),
 ('gas', 'angular_momentum_z'),
 ('gas', 'averaged_density'),
 ('gas', 'baroclinic_vorticity_magnitude'),
 ('gas', 'baroclinic_vorticity_x'),
 ('gas', 'baroclinic_vorticity_y'),
 ('gas', 'baroclinic_vorticity_z'),
 ('gas', 'cell_mass'),
 ('gas', 'cell_volume'),
 ('gas', 'courant_time_step'),
 ('gas', 'current_density_magnitude'),
 ('gas', 'current_density_x'),
 ('gas', 'current_density_y'),
 ('gas', 'current_density_z'),
 ('gas', 'cutting_plane_magnetic_field_x'),
 ('gas', 'cutting_plane_magnetic_field_y'),
 ('gas', 'cutting_plane_magnetic_field_z'),
 ('gas', 'cutting_plane_velocity_x'),
 ('gas', 'cutting_plane_velocity_y'),
 ('gas', 'cutting_plane_velocity_z'),
 ('gas', 'cylindrical_radial_magnetic_field'),
 ('gas', 'cylindrical_radial_magnetic_field_absolute'),
 ('gas', 'cylindrical_radial_velocity'),
 ('gas', 'cylindrical_radial_velocity_absolute'),
 ('gas', 'cylindrical_tangential_magnetic_field'),
 ('gas', 'cylindrical_tangential_magnetic_field_absolute'),
 ('gas', 'cylindrical_tangential_velocity'),
 ('gas', 'cylindrical_tangential_velocity_absolute'),
 ('gas', 'density'),
 ('gas', 'density_gradient_magnitude'),
 ('gas', 'density_gradient_x'),
 ('gas', 'density_gradient_y'),
 ('gas', 'density_gradient_z'),
 ('gas', 'dx'),
 ('gas', 'dy'),
 ('gas', 'dynamical_time'),
 ('gas', 'dz'),
 ('gas', 'emission_measure'),
 ('gas', 'entropy'),
 ('gas', 'kT'),
 ('gas', 'kinetic_energy'),
 ('gas', 'mach_alfven'),
 ('gas', 'mach_number'),
 ('gas', 'magnetic_energy'),
 ('gas', 'magnetic_field_cylindrical_radius'),
 ('gas', 'magnetic_field_cylindrical_theta'),
 ('gas', 'magnetic_field_cylindrical_z'),
 ('gas', 'magnetic_field_divergence'),
 ('gas', 'magnetic_field_divergence_absolute'),
 ('gas', 'magnetic_field_magnitude'),
 ('gas', 'magnetic_field_poloidal'),
 ('gas', 'magnetic_field_spherical_phi'),
 ('gas', 'magnetic_field_spherical_radius'),
 ('gas', 'magnetic_field_spherical_theta'),
 ('gas', 'magnetic_field_strength'),
 ('gas', 'magnetic_field_toroidal'),
 ('gas', 'magnetic_field_x'),
 ('gas', 'magnetic_field_y'),
 ('gas', 'magnetic_field_z'),
 ('gas', 'magnetic_pressure'),
 ('gas', 'mazzotta_weighting'),
 ('gas', 'path_element_x'),
 ('gas', 'path_element_y'),
 ('gas', 'path_element_z'),
 ('gas', 'plasma_beta'),
 ('gas', 'pressure'),
 ('gas', 'pressure_gradient_magnitude'),
 ('gas', 'pressure_gradient_x'),
 ('gas', 'pressure_gradient_y'),
 ('gas', 'pressure_gradient_z'),
 ('gas', 'radial_mach_number'),
 ('gas', 'radial_magnetic_field'),
 ('gas', 'radial_magnetic_field_absolute'),
 ('gas', 'radial_velocity'),
 ('gas', 'radial_velocity_absolute'),
 ('gas', 'shear'),
 ('gas', 'shear_criterion'),
 ('gas', 'shear_mach'),
 ('gas', 'sound_speed'),
 ('gas', 'specific_angular_momentum_magnitude'),
 ('gas', 'specific_angular_momentum_x'),
 ('gas', 'specific_angular_momentum_y'),
 ('gas', 'specific_angular_momentum_z'),
 ('gas', 'spitzer_conduction_coefficient'),
 ('gas', 'spitzer_heat_flux_divergence'),
 ('gas', 'spitzer_heat_flux_x'),
 ('gas', 'spitzer_heat_flux_y'),
 ('gas', 'spitzer_heat_flux_z'),
 ('gas', 'spitzer_heating_rate'),
 ('gas', 'sz_kinetic'),
 ('gas', 'szy'),
 ('gas', 'tangential_magnetic_field'),
 ('gas', 'tangential_over_magnetic_field_magnitude'),
 ('gas', 'tangential_over_velocity_magnitude'),
 ('gas', 'tangential_velocity'),
 ('gas', 'temperature'),
 ('gas', 'temperature_gradient_magnitude'),
 ('gas', 'temperature_gradient_x'),
 ('gas', 'temperature_gradient_y'),
 ('gas', 'temperature_gradient_z'),
 ('gas', 'total_cooling_time'),
 ('gas', 'total_heating_rate'),
 ('gas', 'total_heating_rate_density'),
 ('gas', 'velocity_cylindrical_radius'),
 ('gas', 'velocity_cylindrical_theta'),
 ('gas', 'velocity_cylindrical_z'),
 ('gas', 'velocity_divergence'),
 ('gas', 'velocity_divergence_absolute'),
 ('gas', 'velocity_magnitude'),
 ('gas', 'velocity_spherical_phi'),
 ('gas', 'velocity_spherical_radius'),
 ('gas', 'velocity_spherical_theta'),
 ('gas', 'velocity_x'),
 ('gas', 'velocity_y'),
 ('gas', 'velocity_z'),
 ('gas', 'vertex_x'),
 ('gas', 'vertex_y'),
 ('gas', 'vertex_z'),
 ('gas', 'vorticity_growth_magnitude'),
 ('gas', 'vorticity_growth_magnitude_absolute'),
 ('gas', 'vorticity_growth_timescale'),
 ('gas', 'vorticity_growth_x'),
 ('gas', 'vorticity_growth_y'),
 ('gas', 'vorticity_growth_z'),
 ('gas', 'vorticity_magnitude'),
 ('gas', 'vorticity_squared'),
 ('gas', 'vorticity_stretching_magnitude'),
 ('gas', 'vorticity_stretching_x'),
 ('gas', 'vorticity_stretching_y'),
 ('gas', 'vorticity_stretching_z'),
 ('gas', 'vorticity_x'),
 ('gas', 'vorticity_y'),
 ('gas', 'vorticity_z'),
 ('gas', 'x'),
 ('gas', 'xray_cooling_time'),
 ('gas', 'xray_emissivity'),
 ('gas', 'xray_emissivity_0.1_100_keV'),
 ('gas', 'xray_luminosity_0.1_100_keV'),
 ('gas', 'xray_photon_emissivity_0.1_100_keV'),
 ('gas', 'y'),
 ('gas', 'z'),
 ('index', 'cell_volume'),
 ('index', 'cylindrical_r'),
 ('index', 'cylindrical_radius'),
 ('index', 'cylindrical_theta'),
 ('index', 'cylindrical_z'),
 ('index', 'disk_angle'),
 ('index', 'dx'),
 ('index', 'dy'),
 ('index', 'dz'),
 ('index', 'grid_indices'),
 ('index', 'grid_level'),
 ('index', 'height'),
 ('index', 'morton_index'),
 ('index', 'ones'),
 ('index', 'ones_over_dx'),
 ('index', 'path_element_x'),
 ('index', 'path_element_y'),
 ('index', 'path_element_z'),
 ('index', 'radius'),
 ('index', 'spherical_phi'),
 ('index', 'spherical_r'),
 ('index', 'spherical_radius'),
 ('index', 'spherical_theta'),
 ('index', 'vertex_x'),
 ('index', 'vertex_y'),
 ('index', 'vertex_z'),
 ('index', 'virial_radius_fraction'),
 ('index', 'x'),
 ('index', 'y'),
 ('index', 'z'),
 ('index', 'zeros'),
 ('io', 'mesh_id'),
 ('io', 'particle_blk'),
 ('io', 'particle_cylindrical_velocity_theta'),
 ('io', 'particle_cylindrical_velocity_z'),
 ('io', 'particle_den0'),
 ('io', 'particle_dens'),
 ('io', 'particle_gamc'),
 ('io', 'particle_index'),
 ('io', 'particle_jet'),
 ('io', 'particle_magx'),
 ('io', 'particle_magy'),
 ('io', 'particle_magz'),
 ('io', 'particle_ones'),
 ('io', 'particle_position'),
 ('io', 'particle_position_cylindrical_radius'),
 ('io', 'particle_position_cylindrical_theta'),
 ('io', 'particle_position_cylindrical_z'),
 ('io', 'particle_position_relative'),
 ('io', 'particle_position_relative_x'),
 ('io', 'particle_position_relative_y'),
 ('io', 'particle_position_relative_z'),
 ('io', 'particle_position_spherical_phi'),
 ('io', 'particle_position_spherical_radius'),
 ('io', 'particle_position_spherical_theta'),
 ('io', 'particle_position_x'),
 ('io', 'particle_position_y'),
 ('io', 'particle_position_z'),
 ('io', 'particle_posx'),
 ('io', 'particle_posy'),
 ('io', 'particle_posz'),
 ('io', 'particle_proc'),
 ('io', 'particle_radial_velocity'),
 ('io', 'particle_radius'),
 ('io', 'particle_shok'),
 ('io', 'particle_specific_angular_momentum'),
 ('io', 'particle_specific_angular_momentum_x'),
 ('io', 'particle_specific_angular_momentum_y'),
 ('io', 'particle_specific_angular_momentum_z'),
 ('io', 'particle_spherical_position_phi'),
 ('io', 'particle_spherical_position_radius'),
 ('io', 'particle_spherical_position_theta'),
 ('io', 'particle_spherical_velocity_phi'),
 ('io', 'particle_spherical_velocity_radius'),
 ('io', 'particle_spherical_velocity_theta'),
 ('io', 'particle_tadd'),
 ('io', 'particle_tag'),
 ('io', 'particle_tau'),
 ('io', 'particle_velocity'),
 ('io', 'particle_velocity_cylindrical_radius'),
 ('io', 'particle_velocity_cylindrical_theta'),
 ('io', 'particle_velocity_cylindrical_z'),
 ('io', 'particle_velocity_magnitude'),
 ('io', 'particle_velocity_relative'),
 ('io', 'particle_velocity_relative_x'),
 ('io', 'particle_velocity_relative_y'),
 ('io', 'particle_velocity_relative_z'),
 ('io', 'particle_velocity_spherical_phi'),
 ('io', 'particle_velocity_spherical_radius'),
 ('io', 'particle_velocity_spherical_theta'),
 ('io', 'particle_velocity_x'),
 ('io', 'particle_velocity_y'),
 ('io', 'particle_velocity_z'),
 ('io', 'particle_velx'),
 ('io', 'particle_vely'),
 ('io', 'particle_velz')]

In [4]:
plot = yt.SlicePlot(ds, 'y', 'jet ')
plot.zoom(4)
plot.set_zlim('jet ', 1E-7, 1)
plot.annotate_contour('jet ', ncont=2, clim=(1E-4, 1E-3), take_log=True)
plot.show()




In [10]:
plot = yt.SlicePlot(ds, 'y', 'xray_emissivity_0.1_100_keV')
plot.zoom(4)
plot.show()




In [3]:
metallicity = 0.5
#ds = yt.load('/home/ychen/data/0only_0529_h1/data/MHD_Jet_hdf5_plt_cnt_0000')
ds = yt.load('/home/ychen/data/0only_1022_h1_10Myr/data/MHD_Jet_10Myr_hdf5_plt_cnt_1700')
xray_fields = yt.add_xray_emissivity_field(ds, 0.1, 100, table_type='apec', metallicity=metallicity)


yt : [WARNING  ] 2018-05-10 14:52:59,390 Field ('gas', 'xray_emissivity_0.1_100_keV') already exists. To override use force_override=True.
yt : [WARNING  ] 2018-05-10 14:52:59,403 Field ('gas', 'xray_luminosity_0.1_100_keV') already exists. To override use force_override=True.
yt : [WARNING  ] 2018-05-10 14:52:59,413 Field ('gas', 'xray_photon_emissivity_0.1_100_keV') already exists. To override use force_override=True.

In [9]:
plot = yt.SlicePlot(ds, 'y', 'xray_cooling_time', )
plot.set_unit('xray_cooling_time', 'Gyr')
plot.zoom(4)
plot.show()




In [14]:
plot = yt.SlicePlot(ds, 'y', 'temperature', data_source=sp, width=(240, 'kpc'))
plot.show()




In [17]:
plot = yt.SlicePlot(ds, 'y', 'entropy', data_source=sp, width=(240, 'kpc'))
plot.set_zlim('entropy', 30, 250)
plot.show()




In [12]:
plot = yt.SlicePlot(ds, 'y', 'density')
plot.zoom(4)
plot.show()




In [39]:
ds = yt.load('/home/ychen/data/0only_1022_h1_10Myr/data/MHD_Jet_10Myr_hdf5_plt_cnt_1700')
sp = ds.sphere([0,0,0], (150, 'kpc'))
prof = yt.Profile2D(sp, 'spherical_radius', 100, 0.1, 100, True, 'entropy', 100, 10, 300, True)

In [41]:
pp = yt.PhasePlot(sp, 'spherical_radius', 'entropy', 'cell_mass', weight_field=None)
pp.set_unit('spherical_radius', 'kpc')
pp.set_unit('cell_mass', 'Msun')
pp.set_xlim(8, 150)
pp.set_ylim(20, 300)
pp.set_zlim('cell_mass', 1E7, 1E11)
pp.show()
pp.save()



Out[41]:
['MHD_Jet_10Myr_hdf5_plt_cnt_1700_2d-Profile_spherical_radius_entropy_cell_mass.png']

In [46]:
pp.set_zlim('cell_mass', 1E6, 1E10)
cmap = plt.cm.arbre()
cmap.set_bad('purple')
pp.show()


---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-46-c5042f4aff4b> in <module>()
      1 pp.set_zlim('cell_mass', 1E6, 1E10)
----> 2 cmap = plt.cm.arbre()
      3 cmap.set_bad('purple')
      4 pp.show()

TypeError: 'dict' object is not callable

In [60]:
box['temperature'].to_equivalent('keV', 'thermal')


Out[60]:
YTArray([ 5.89883703,  5.88709746,  5.8726748 , ...,  5.87447824,
        5.88700991,  5.89856403]) keV

In [63]:
box['H_nuclei_density']


Out[63]:
YTArray([ 0.00255889,  0.00260189,  0.00264677, ...,  0.00264559,
        0.00260211,  0.00255946]) cm**(-3)

In [30]:
ds.add_gradient_fields(('gas', 'temperature'))

#le = ds.domain_left_edge/4
#re = ds.domain_right_edge/4
#box = ds.box(le, re)

In [37]:
plot = yt.SlicePlot(ds, 'y', 'temperature_gradient_magnitude', data_source=sp, width=(240, 'kpc'))
plot.set_unit('temperature_gradient_magnitude', 'K/pc')
plot.show()




In [ ]:


In [38]:
plot = yt.SlicePlot(ds, 'y', 'temperature_gradient_x', data_source=sp, width=(240, 'kpc'))
plot.set_unit('temperature_gradient_x', 'K/pc')
plot.set_cmap('temperature_gradient_x', 'seismic')
plot.set_zlim('temperature_gradient_x', -3E4, 3E4)
plot.show()


yt : [WARNING  ] 2018-05-10 19:13:54,189 Plot image for field ('gas', 'temperature_gradient_x') has both positive and negative values. Min = -0.000000, Max = 0.000000.
yt : [WARNING  ] 2018-05-10 19:13:54,192 Switching to symlog colorbar scaling unless linear scaling is specified later


In [39]:
plot = yt.SlicePlot(ds, 'y', 'spitzer_conduction_coefficient', data_source=sp, width=(240, 'kpc'))
plot.show()




In [16]:
plot = yt.SlicePlot(ds, 'y', 'spitzer_heat_flux_x', data_source=sp, width=(240, 'kpc'))
plot.set_log('spitzer_heat_flux_x' , True, linthresh=1E-3)
plot.set_cmap('spitzer_heat_flux_x', 'seismic')
plot.set_zlim('spitzer_heat_flux_x', -1E-1, 1E-1)
plot.show()


yt : [WARNING  ] 2018-05-12 22:56:49,230 Plot image for field ('gas', 'spitzer_heat_flux_x') has both positive and negative values. Min = -0.200316, Max = 0.168001.
yt : [WARNING  ] 2018-05-12 22:56:49,234 Switching to symlog colorbar scaling unless linear scaling is specified later


In [23]:
plot = yt.SlicePlot(ds, 'y', 'spitzer_heat_flux_divergence', data_source=sp, width=(240, 'kpc'))

plot.set_log('spitzer_heat_flux_divergence' , True, linthresh=1E-25)
plot.set_cmap('spitzer_heat_flux_divergence', 'seismic')
plot.set_zlim('spitzer_heat_flux_divergence', -1E-22, 1E-22)
plot.show()


yt : [WARNING  ] 2018-05-14 07:35:00,684 Plot image for field ('gas', 'spitzer_heat_flux_divergence') has both positive and negative values. Min = -0.000000, Max = 0.000000.
yt : [WARNING  ] 2018-05-14 07:35:00,688 Switching to symlog colorbar scaling unless linear scaling is specified later


In [24]:
plot = yt.SlicePlot(ds, 'y', 'total_heating_rate', data_source=sp, width=(240, 'kpc'))

plot.set_log('total_heating_rate' , True, linthresh=1E41)
plot.set_cmap('total_heating_rate', 'seismic')
plot.set_zlim('total_heating_rate', -1E43, 1E43)
plot.show()


yt : [WARNING  ] 2018-05-14 07:37:22,776 Plot image for field ('gas', 'total_heating_rate') has both positive and negative values. Min = -888336620233762500720938966594301076701184.000000, Max = 216173858096431130918417663570032023568384.000000.
yt : [WARNING  ] 2018-05-14 07:37:22,780 Switching to symlog colorbar scaling unless linear scaling is specified later


In [22]:
plot = yt.SlicePlot(ds, 'y', 'spitzer_heating_rate', data_source=sp, width=(240, 'kpc'))

plot.set_log('spitzer_heating_rate' , True, linthresh=1E41)
plot.set_cmap('spitzer_heating_rate', 'seismic')
plot.set_zlim('spitzer_heating_rate', -1E43, 1E43)
plot.show()


yt : [WARNING  ] 2018-05-14 07:33:24,522 Plot image for field ('gas', 'spitzer_heating_rate') has both positive and negative values. Min = -888336620233762500720938966594301076701184.000000, Max = 216173858096431130918417663570032023568384.000000.
yt : [WARNING  ] 2018-05-14 07:33:24,526 Switching to symlog colorbar scaling unless linear scaling is specified later


In [5]:
plot = yt.SlicePlot(ds, 'y', 'total_cooling_time', data_source=sp, width=(240, 'kpc'))

plot.set_log('total_cooling_time' , False)
plot.set_cmap('total_cooling_time', 'seismic')
plot.set_zlim('total_cooling_time', -1E2, 1E2)
plot.show()


yt : [WARNING  ] 2018-06-22 11:03:22,246 Plot image for field ('gas', 'total_cooling_time') has both positive and negative values. Min = -1271844.399105, Max = 5184567.763767.
yt : [WARNING  ] 2018-06-22 11:03:22,251 Switching to symlog colorbar scaling unless linear scaling is specified later


In [ ]:
extrema = {'entropy': (20, 324)}
logs = {'entropy': True}
fields = ['spitzer_heating_rate', 'xray_luminosity_0.1_100_keV', 'cell_mass']
prof_entropy = yt.create_profile(sp, 'entropy', fields, weight_field=None, 
                         extrema=extrema, logs=logs)

In [33]:
null = plt.hist(sp['entropy'], range=(20,325), weights=sp['cell_volume'], bins=200)
plt.xlim(20, 325)


Out[33]:
(20, 325)

In [ ]:
plt.step(prof_entropy.x, prof_entropy['cell_mass'])
plt.semilogx()

In [ ]:
plt.step(prof_entropy.x, -prof_entropy['xray_luminosity_0.1_100_keV'], label='X-ray Cooling')
plt.step(prof_entropy.x, prof_entropy['spitzer_heating_rate'], label='Spitzer Thermal Conduction')
plt.step(prof_entropy.x, prof_entropy['spitzer_heating_rate']-prof_entropy['xray_luminosity_0.1_100_keV'], label='Total')

plt.ylim(-1E46, 1E46)
plt.yscale('symlog', linthreshy=2E42)
yticks = [-1E46, -1E45, -1E44, -1E43, -1E42, 0, 1E42, 1E43, 1E44, 1E45, 1E46]
plt.yticks(yticks, yticks)

plt.ylabel('Heating/Cooling rate (erg/s)')
plt.semilogx()
plt.xlim(20, 250)
entropy_ticks = [20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300]
plt.xticks(entropy_ticks, entropy_ticks)
plt.xlabel(r'entropy (cm$^2\ $ keV)')
plt.axhline(0, ls=':', color='grey')
plt.text(22, 1E45, '%.0f Myr' % ds.current_time.in_units('Myr'))
plt.legend()

In [ ]:
sum(prof_entropy['spitzer_heating_rate'])

In [29]:
extrema = {'entropy': (20, 324), 'spherical_radius': ((10, 'kpc'), (150, 'kpc'))}
fields = ['spitzer_heating_rate', 'xray_luminosity_0.1_100_keV', 'total_heating_rate', 'cell_mass']
prof = yt.create_profile(sp, ['spherical_radius', 'entropy'], fields, weight_field=None,
                         extrema=extrema)

In [7]:
pp = yt.PhasePlot.from_profile(prof)
pp.annotate_text(1.5, 200, '%.0f Myr' % ds.current_time.in_units('Myr'))
pp.set_unit('spherical_radius', 'kpc')
pp.set_cmap('spitzer_heating_rate', 'RdBu_r')
pp.set_cmap('total_heating_rate', 'RdBu_r')
pp.set_cmap('xray_luminosity_0.1_100_keV', 'RdBu_r')
pp.set_log('spitzer_heating_rate', False)
pp.set_zlim('spitzer_heating_rate', -5E44, 5E44)
pp.set_log('xray_luminosity_0.1_100_keV', False)
pp.set_zlim('xray_luminosity_0.1_100_keV', -5E44, 5E44)


/home/ychen/src/yt-git/yt/visualization/plot_container.py:118: RuntimeWarning: invalid value encountered in log10
  expA = np.floor(np.log10(vmin))
Out[7]:





In [31]:
from yt.visualization.plot_container import FieldTransform
from yt.visualization.tick_locators import LogLocator

linthresh = 1E43

symlog_transform = FieldTransform('symlog', None, LogLocator()) 
pp._field_transform['spitzer_heating_rate'] = symlog_transform
pp._field_transform['spitzer_heating_rate'].func = linthresh
pp._setup_plots()
print(pp._field_transform['spitzer_heating_rate'])
pp.set_zlim('spitzer_heating_rate', -1E44, 1E44)
plot2 = pp['spitzer_heating_rate']
entropy_ticks = [20, 30, 40, 50, 60, 70, 80, 90, 100, 200]
plot2.axes.set_yticks(entropy_ticks)
plot2.axes.set_yticklabels(entropy_ticks)
r_ticks = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
plot2.axes.set_xticks(r_ticks)
plot2.axes.set_xticklabels(r_ticks)
plot2


<yt.visualization.plot_container.FieldTransform object at 0x7f784a4eb0f0>
/home/ychen/src/yt-git/yt/visualization/plot_container.py:118: RuntimeWarning: invalid value encountered in log10
  expA = np.floor(np.log10(vmin))
Out[31]:

In [70]:
keV = yt.units.keV
cm = yt.units.cm
kappa = 1*(keV**(5/2)*cm**3)
kappa.convert_to_base()


Out[70]:
1.0274860530720377e-22 cm**8*g**(5/2)/s**5

In [35]:
heating_rate = prof['spitzer_heating_rate'].flatten()
null = plt.hist(np.log10(heating_rate[heating_rate>0]), bins=20, histtype='step', label='heating')
null = plt.hist(np.log10(-heating_rate[heating_rate<0]), bins=20, histtype='step', label='cooling')
plt.legend()


Out[35]:
<matplotlib.legend.Legend at 0x7fbead792c88>

In [ ]: