In [1]:
import sys
sys.path.append('../../..')
In [2]:
import numpy
import scipy.stats
from lib.msra_loss import MSRALossFunctionAbs
In [3]:
class MCLossFunction(MSRALossFunctionAbs):
def __init__(self, distrib, alpha, c=None):
self.__alpha = alpha
super(MCLossFunction, self).__init__(distrib, c)
def shortfall_risk(self, m=None):
m = self._check_argument(m)
x_minus_m = numpy.subtract(self.x, m)
mean_sum_ = numpy.mean(x_minus_m.sum(axis=1))
pos_part = numpy.maximum(x_minus_m, 0.)
pos_part_squared = numpy.square(pos_part)
mean_sum_2_ = numpy.mean(pos_part_squared.sum(axis=1))
to_add = 0.
for i in xrange(self.dim):
for j in xrange(i + 1, self.dim):
to_add += numpy.mean(numpy.multiply(pos_part[:, i], pos_part[:, j]))
return mean_sum_ + 0.5 * mean_sum_2_ + self.__alpha * to_add
def shortfall_risk_jac(self, m):
m = self._check_argument(m)
x_minus_m = numpy.subtract(self.x, m)
pos_part = numpy.maximum(x_minus_m, 0.)
mean_pos_part = numpy.mean(pos_part, axis=0)
dbl = []
for i in xrange(self.dim):
indic_i = numpy.sign(pos_part[:, i])
tmp = 0.
for j in xrange(self.dim):
if i != j:
tmp += numpy.mean(numpy.multiply(indic_i, pos_part[:, j]))
dbl.append(self.__alpha * tmp)
return mean_pos_part + 1. + dbl
In [4]:
M = 100000
rho = -0.5
mu = [0., 0., 0.]
sigma = [[0.5, 0.5 * rho, 0.], [0.5 * rho, 0.5, 0.], [0., 0., 0.6]]
rv = scipy.stats.multivariate_normal(mean=mu, cov=sigma, allow_singular=True)
X = rv.rvs(size=M)
c = 1.
loss = MCLossFunction(X, 1., 1.)
In [5]:
from scipy.optimize import minimize
maxiter = 3500
In [6]:
guess = 0. * numpy.ones(loss.dim)
In [7]:
cons = ({'type': 'ineq',
'fun' : lambda x: loss.ineq_constraint(x),
'jac' : lambda x: loss.ineq_constraint_jac(x)})
In [8]:
res = minimize(loss.objective, guess,
jac=loss.objective_jac,
constraints=cons,
method='SLSQP',
options={'maxiter': maxiter, 'disp': True})
In [9]:
print res
print
print loss.ineq_constraint(res.x)
print numpy.mean(res.x[0:1])