In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from pandas import DataFrame, Series

In [2]:
np.ones((10, 5)).shape


Out[2]:
(10L, 5L)

In [3]:
np.ones((3, 4, 5), dtype=np.float64).strides


Out[3]:
(160L, 40L, 8L)

In [4]:
ints = np.ones(10, dtype=np.uint16)
floats = np.ones(10, dtype=np.float32)
np.issubdtype(ints.dtype, np.integer)


Out[4]:
True

In [5]:
np.issubdtype(floats.dtype, np.integer)


Out[5]:
False

In [6]:
np.float64.mro()


Out[6]:
[numpy.float64,
 numpy.floating,
 numpy.inexact,
 numpy.number,
 numpy.generic,
 float,
 object]

In [7]:
arr = np.arange(8)
arr


Out[7]:
array([0, 1, 2, 3, 4, 5, 6, 7])

In [8]:
arr.reshape((4, 2))


Out[8]:
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7]])

In [9]:
arr.reshape((4, 2)).reshape((2, 4))


Out[9]:
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])

In [10]:
arr = np.arange(15)
arr.reshape((5, -1))


Out[10]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11],
       [12, 13, 14]])

In [12]:
other_arr = np.ones((3, 5))
other_arr.shape


Out[12]:
(3L, 5L)

In [13]:
arr.reshape(other_arr.shape)


Out[13]:
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

In [15]:
arr = np.arange(15).reshape((5, 3))
arr


Out[15]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11],
       [12, 13, 14]])

In [16]:
arr.ravel()


Out[16]:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

In [17]:
arr.flatten()


Out[17]:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

In [18]:
arr = np.arange(12).reshape((3, 4))
arr


Out[18]:
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

In [19]:
arr.ravel()


Out[19]:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

In [20]:
arr.ravel('F')


Out[20]:
array([ 0,  4,  8,  1,  5,  9,  2,  6, 10,  3,  7, 11])

In [21]:
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])
np.concatenate([arr1, arr2], axis=0)


Out[21]:
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])

In [22]:
np.concatenate([arr1, arr2], axis=1)


Out[22]:
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 10, 11, 12]])

In [23]:
np.vstack((arr1, arr2))


Out[23]:
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 7,  8,  9],
       [10, 11, 12]])

In [24]:
np.hstack((arr1, arr2))


Out[24]:
array([[ 1,  2,  3,  7,  8,  9],
       [ 4,  5,  6, 10, 11, 12]])

In [25]:
from numpy.random import randn
arr = randn(5, 2)
arr


Out[25]:
array([[-0.58201974,  1.40005207],
       [-0.23898917,  0.3242288 ],
       [-0.25736705, -2.04223523],
       [ 1.40643752,  1.24600034],
       [-0.28548885,  0.11601834]])

In [26]:
first, second, third = np.split(arr, [1, 3])
first


Out[26]:
array([[-0.58201974,  1.40005207]])

In [27]:
second


Out[27]:
array([[-0.23898917,  0.3242288 ],
       [-0.25736705, -2.04223523]])

In [28]:
third


Out[28]:
array([[ 1.40643752,  1.24600034],
       [-0.28548885,  0.11601834]])

In [30]:
np.split(arr, [2])


Out[30]:
[array([[-0.58201974,  1.40005207],
        [-0.23898917,  0.3242288 ]]), array([[-0.25736705, -2.04223523],
        [ 1.40643752,  1.24600034],
        [-0.28548885,  0.11601834]])]

In [31]:
arr = np.arange(6)
arr1 = arr.reshape((3, 2))
arr2 = randn(3, 2)
np.r_[arr1, arr2]


Out[31]:
array([[ 0.        ,  1.        ],
       [ 2.        ,  3.        ],
       [ 4.        ,  5.        ],
       [ 0.2643935 ,  0.33043113],
       [ 1.63338196,  0.0218377 ],
       [ 0.00980429, -0.2526578 ]])

In [32]:
np.c_[np.r_[arr1, arr2], arr]


Out[32]:
array([[ 0.        ,  1.        ,  0.        ],
       [ 2.        ,  3.        ,  1.        ],
       [ 4.        ,  5.        ,  2.        ],
       [ 0.2643935 ,  0.33043113,  3.        ],
       [ 1.63338196,  0.0218377 ,  4.        ],
       [ 0.00980429, -0.2526578 ,  5.        ]])

In [33]:
np.c_[1:6, -10:-5]


Out[33]:
array([[  1, -10],
       [  2,  -9],
       [  3,  -8],
       [  4,  -7],
       [  5,  -6]])

In [ ]:


In [ ]: