---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-23-4079dcb3ab8a> in <module>()
4
5 for i in range(iterations):
----> 6 population = [generate_sample() for i in range(samples)]
7 batch_states,batch_actions,batch_rewards = map(np.array,zip(*population))
8 threshold = np.percentile(batch_rewards, percentile)
<ipython-input-23-4079dcb3ab8a> in <listcomp>(.0)
4
5 for i in range(iterations):
----> 6 population = [generate_sample() for i in range(samples)]
7 batch_states,batch_actions,batch_rewards = map(np.array,zip(*population))
8 threshold = np.percentile(batch_rewards, percentile)
<ipython-input-22-6820df146c39> in generate_sample()
7
8 for i in range(t_max):
----> 9 a = agent.predict(s.reshape(1, 24))[0]
10 new_s, r, done, _ = env.step(a)
11 batch_s.append(s)
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\keras\models.py in predict(self, x, batch_size, verbose)
914 if self.model is None:
915 self.build()
--> 916 return self.model.predict(x, batch_size=batch_size, verbose=verbose)
917
918 def predict_on_batch(self, x):
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\keras\engine\training.py in predict(self, x, batch_size, verbose)
1502 f = self.predict_function
1503 return self._predict_loop(f, ins,
-> 1504 batch_size=batch_size, verbose=verbose)
1505
1506 def train_on_batch(self, x, y,
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\keras\engine\training.py in _predict_loop(self, f, ins, batch_size, verbose)
1126 ins_batch = _slice_arrays(ins, batch_ids)
1127
-> 1128 batch_outs = f(ins_batch)
1129 if not isinstance(batch_outs, list):
1130 batch_outs = [batch_outs]
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\keras\backend\tensorflow_backend.py in __call__(self, inputs)
2265 updated = session.run(self.outputs + [self.updates_op],
2266 feed_dict=feed_dict,
-> 2267 **self.session_kwargs)
2268 return updated[:len(self.outputs)]
2269
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
787 try:
788 result = self._run(None, fetches, feed_dict, options_ptr,
--> 789 run_metadata_ptr)
790 if run_metadata:
791 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
995 if final_fetches or final_targets:
996 results = self._do_run(handle, final_targets, final_fetches,
--> 997 feed_dict_string, options, run_metadata)
998 else:
999 results = []
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1130 if handle is None:
1131 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1132 target_list, options, run_metadata)
1133 else:
1134 return self._do_call(_prun_fn, self._session, handle, feed_dict,
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1137 def _do_call(self, fn, *args):
1138 try:
-> 1139 return fn(*args)
1140 except errors.OpError as e:
1141 message = compat.as_text(e.message)
C:\Users\Abdul\Anaconda3\envs\dlnd-tf-lab\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1119 return tf_session.TF_Run(session, options,
1120 feed_dict, fetch_list, target_list,
-> 1121 status, run_metadata)
1122
1123 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: