In [1]:
import numpy as np
import itertools
import sklearn.metrics as metrics
from scipy.stats import zscore
from sklearn.preprocessing import normalize
import sklearn.cross_validation as cv
%load_ext autoreload
%autoreload 2
%aimport utils
from LogisticRegressionClassifier import LogisticRegressionClassifier
In [2]:
%pylab inline
In [ ]:
In [3]:
fft_dict, fft_labels, ffts = utils.read_features(feature='fft')
fft_dict
Out[3]:
In [5]:
lrc_fft = LogisticRegressionClassifier(ffts, fft_labels, fft_dict)
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [7]:
lrc_fft.cross_validate(3)
In [ ]:
In [ ]:
In [171]:
_ = utils.plot_confusion_matrix(report)
In [ ]:
In [ ]:
In [181]:
In [154]:
def debug_lrc(lrc):
print(lrc.X.shape),
print(lrc.X_test.shape),
print(lrc.y.shape),
print(lrc.y_test.shape),
print(lrc.Delta.shape),
print(lrc.W.shape),
print(lrc._X.shape)
In [9]:
mfc_dict, mfc_labels, mfcs = utils.read_features(feature='mfc')
In [10]:
lrc_mfc = LogisticRegressionClassifier(mfcs, mfc_labels, mfc_dict)
In [11]:
lrc_mfc.metrics
Out[11]:
In [14]:
lrc_mfc.cross_validate(3)
In [ ]:
lrc_mfc.prediction(lrc_mfc.W, lrc_mfc.X_test)
In [ ]:
lrc_mfc.train(reset=False, eta=0.001)
In [ ]:
lrc_mfc.metrics
In [138]:
mfc_pred, mfc_probas = lrc_mfc.prediction(lrc_mfc.W, mfcs)
In [139]:
print(metrics.classification_report(mfc_labels, mfc_pred))
cm = utils.plot_confusion_matrix(metrics.confusion_matrix(mfc_labels, mfc_pred))
In [ ]:
In [135]:
kf = cv.KFold(10, n_folds = 2, shuffle=True)
for i, k in enumerate(kf):
print( i, list(k))
In [ ]:
In [34]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [2]:
import sklearn
sklearn.__version__
Out[2]:
In [5]:
from sklearn import datasets
from sklearn import svm
import sklearn.cross_validation as cv
iris = datasets.load_iris()
iris.data.shape, iris.target.shape
Out[5]:
In [6]:
clf = svm.SVC(kernel='linear', C=1)
scores = cv.cross_val_score(
clf, iris.data, iris.target, cv=5)
In [42]:
scores
Out[42]:
In [43]:
cv.cross_val_score
Out[43]:
In [8]:
predicted = cv.cross_val_predict(clf, iris.data,iris.target, cv=10)
In [12]:
print(metrics.classification_report(iris.target, predicted))
In [18]:
kf = cv.KFold(iris.data.shape[0], n_folds = 10, shuffle=True)
for test, train in kf:
X_train, X_test, y_train, y_test = \
iris.data[train], iris.data[test], iris.target[train], iris.target[test]
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
print(metrics.confusion_matrix(y_test, pred))
In [ ]: