In [2]:
import numpy as np
import sklearn.preprocessing as pp
In [3]:
a = np.arange(5)
print "a:", a
In [4]:
ss = pp.StandardScaler()
print ss.fit(a)
print ss.fit_transform(a)
print ss.transform([[1, 2], [3, 4], [5, 6]])
In [5]:
scaled = ss.transform(a)
print scaled
In [6]:
np.mean(scaled)
Out[6]:
In [7]:
np.std(scaled)
Out[7]:
In [20]:
a = np.arange(10).reshape(5,2)
print a
ss = pp.StandardScaler()
#print "test1:", ss.mean_ # mean doesn't exist since hasn't put fit(a)
print "00:", ss
m = pp.StandardScaler().fit(a)
print m
print "test2:", m.mean_
print ss.fit(a) # algorithm how to manipulate the data, ss after fit,train the data (fit=train)
scaled = ss.transform(a) # fit figure out, transform actually doing it
print scaled
In [46]:
b = np.array([[2, 4], [5, 6], [7, 2], [5, 6], [6, 7]])
print b
ss.transform(b)
Out[46]:
In [61]:
ss = pp.StandardScaler()
print ss.fit([[1, 2], [3, 4], [5, 6]])
print ss.fit_transform([[1, 2], [3, 4], [5, 6]])
In [1]:
from sklearn import datasets
iris = datasets.load_iris()
digits = datasets.load_digits()
In [2]:
print digits.data
In [3]:
digits.target
Out[3]:
In [5]:
digits.images[0]
Out[5]:
In [6]:
from sklearn import svm
clf = svm.SVC(gamma=0.001, C=100.)
In [7]:
clf.fit(digits.data[:-1], digits.target[:-1])
Out[7]:
In [8]:
clf.predict(digits.data[-1])
Out[8]:
In [11]:
clf = svm.SVC()
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf.fit(X, y)
Out[11]:
In [12]:
import pickle
s = pickle.dumps(clf)
clf2 = pickle.loads(s)
clf2.predict(X[0])
Out[12]:
In [13]:
y[0]
Out[13]:
In [15]:
a = np.array([[1, 1], [2, 3]])
shape(a)
Out[15]:
In [16]:
a = np.array((1,2,3))
shape(a)
Out[16]:
In [1]:
np.arange('2005-02', '2005-03', dtype='datetime64[D]')
Out[1]:
In [2]:
import math
math.sqrt(16)
Out[2]:
In [3]:
range(5, 10)
Out[3]:
In [4]:
list(range(5, 10))
Out[4]:
In [7]:
range(0, 10)
Out[7]:
In [8]:
list(range(0, 10))
Out[8]:
In [14]:
myName="David"
myName.center(2)
Out[14]:
In [ ]: