Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[3]:
<matplotlib.image.AxesImage at 0x7fb6e8d0f358>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [4]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[4]:
<matplotlib.image.AxesImage at 0x7fb6e8c85780>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [5]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [6]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    inputs_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='inputs_real')
    input_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    learning_rate = tf.placeholder(tf.float32, name='learning_rate')

    return inputs_real, input_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the generator, tensor logits of the generator).


In [17]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    alpha = 0.2
    patch = 5
    stride = 2
    with tf.variable_scope('discriminator', reuse=reuse):
        #Input 28x28x3
        x1 = tf.layers.conv2d(images, 64, patch, strides=stride, padding='same')
        relu1 = tf.maximum(alpha * x1, x1)
        #14x14x64
        
        x2 = tf.layers.conv2d(relu1, 128, patch, strides=stride, padding='same')
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        #7x7x128
        
        #x3 = tf.layers.conv2d(relu2, 256, patch, strides=stride, padding='same')
        #bn3 = tf.layers.batch_normalization(x3, training=True)
        #relu3 = tf.maximum(alpha * bn3, bn3)
        #Hoping TF pads to 4 otherwise 3.5 x 3.5 x 256
        
        #Flatten her up
        #flat = tf.reshape(relu3, (-1, 4*4*256))
        flat = tf.reshape(relu2, (-1, 7*7*128))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)

    return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [18]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    alpha = 0.2
    patch = 5
    stride = 2
    with tf.variable_scope('generator', reuse=not is_train):
        #Create the fully connected layer
        #x1 = tf.layers.dense(z, 4*4*256)
        x1 = tf.layers.dense(z, 7*7*128)
        #reshape
        #x1 = tf.reshape(x1, (-1, 4,4,256))
        x1 = tf.reshape(x1, (-1, 7,7,128))
        x1 = tf.layers.batch_normalization(x1, training=is_train)
        x1 = tf.maximum(alpha * x1, x1)
        #4x4x256
        
        #x2 = tf.layers.conv2d_transpose(x1, 128, patch, strides=stride, padding='same')
        x2 = tf.layers.conv2d_transpose(x1, 64, patch, strides=stride, padding='same')
        #Note - May have to come back here and reshape to 7x7
        #x2 = tf.reshape(x2, (-1, 7,7,128))
        x2 = tf.layers.batch_normalization(x2, training=is_train)
        x2 = tf.maximum(alpha * x2, x2)
        #7x7x128
        
        #x3 = tf.layers.conv2d_transpose(x2, 64, patch, strides=stride, padding='same')
        #x3 = tf.layers.batch_normalization(x3, training=is_train)
        #x3 = tf.maximum(alpha * x3, x3)
        #14x14x64
        
        #Output layer
        #logits = tf.layers.conv2d_transpose(x3, out_channel_dim, patch, strides=stride, padding='same')
        logits = tf.layers.conv2d_transpose(x2, out_channel_dim, patch, strides=stride, padding='same')
        
        #28x28x?
        
        out = tf.tanh(logits)

        return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [19]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))
    
    d_loss = d_loss_real + d_loss_fake
    
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [20]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]
    
    #Perform optimization
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [21]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [22]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    #Build Model
    #print(data_shape[0])
    img_w, img_h, img_chan = data_shape[1], data_shape[2], data_shape[3]
    inp_real, inp_z, _ = model_inputs(img_w, img_h, img_chan, z_dim)
    d_loss, g_loss = model_loss(inp_real, inp_z, img_chan)
    d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    
    saver = tf.train.Saver()
    sample_z = np.random.uniform(-1, 1, size=(72, z_dim))
    
    display_interval = 100
    num_img_to_disp = 25
    steps = 0
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                steps += 1
                
                batch_images *= 2
                #Random noise for generator
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                
                #Run optimizers
                _ = sess.run(d_opt, feed_dict={inp_real: batch_images, inp_z: batch_z})
                _ = sess.run(g_opt, feed_dict={inp_z: batch_z, inp_real: batch_images})
                
                if steps % display_interval == 0:
                    train_loss_d = d_loss.eval({inp_real: batch_images, inp_z: batch_z})
                    train_loss_g = g_loss.eval({inp_z: batch_z})
                    
                    print(  "Epoch: {} of {}".format(epoch_i, epoch_count), 
                            "D-loss: {}".format(train_loss_d),
                            "G-loss: {}".format(train_loss_g) )
                    
                    show_generator_output(sess, num_img_to_disp, inp_z, img_chan, data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [23]:
batch_size = 32
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch: 0 of 2 D-loss: 0.8616595268249512 G-loss: 2.167440891265869
Epoch: 0 of 2 D-loss: 0.8675343990325928 G-loss: 1.3185274600982666
Epoch: 0 of 2 D-loss: 0.857633650302887 G-loss: 1.1829819679260254
Epoch: 0 of 2 D-loss: 1.0675910711288452 G-loss: 0.6527104377746582
Epoch: 0 of 2 D-loss: 0.6891833543777466 G-loss: 1.4174823760986328
Epoch: 0 of 2 D-loss: 0.6874974966049194 G-loss: 1.0390808582305908
Epoch: 0 of 2 D-loss: 0.4800301194190979 G-loss: 1.4383766651153564
Epoch: 0 of 2 D-loss: 0.5415662527084351 G-loss: 1.7347421646118164
Epoch: 0 of 2 D-loss: 0.5196417570114136 G-loss: 1.3595731258392334
Epoch: 0 of 2 D-loss: 0.7107097506523132 G-loss: 1.2104747295379639
Epoch: 0 of 2 D-loss: 0.9335262775421143 G-loss: 2.414961338043213
Epoch: 0 of 2 D-loss: 0.7009954452514648 G-loss: 0.9973598122596741
Epoch: 0 of 2 D-loss: 0.8281001448631287 G-loss: 1.7822390794754028
Epoch: 0 of 2 D-loss: 0.7337827682495117 G-loss: 0.898695707321167
Epoch: 0 of 2 D-loss: 0.7476099729537964 G-loss: 1.1783578395843506
Epoch: 0 of 2 D-loss: 0.8412343859672546 G-loss: 1.0040823221206665
Epoch: 0 of 2 D-loss: 0.7096937894821167 G-loss: 1.2658298015594482
Epoch: 0 of 2 D-loss: 1.1102604866027832 G-loss: 0.528571367263794
Epoch: 1 of 2 D-loss: 0.8774803280830383 G-loss: 0.9167818427085876
Epoch: 1 of 2 D-loss: 0.7234674692153931 G-loss: 1.8256279230117798
Epoch: 1 of 2 D-loss: 0.575154721736908 G-loss: 1.3799731731414795
Epoch: 1 of 2 D-loss: 0.793408215045929 G-loss: 0.8805777430534363
Epoch: 1 of 2 D-loss: 1.2123159170150757 G-loss: 2.8122401237487793
Epoch: 1 of 2 D-loss: 0.6045303344726562 G-loss: 1.32157301902771
Epoch: 1 of 2 D-loss: 0.666871190071106 G-loss: 1.4181852340698242
Epoch: 1 of 2 D-loss: 0.6732778549194336 G-loss: 1.5314711332321167
Epoch: 1 of 2 D-loss: 0.5421448945999146 G-loss: 1.4594906568527222
Epoch: 1 of 2 D-loss: 0.5268087983131409 G-loss: 1.8926706314086914
Epoch: 1 of 2 D-loss: 0.6431316137313843 G-loss: 1.0966811180114746
Epoch: 1 of 2 D-loss: 0.8639566898345947 G-loss: 0.8959072828292847
Epoch: 1 of 2 D-loss: 0.7198752164840698 G-loss: 0.9554052352905273
Epoch: 1 of 2 D-loss: 0.5607026815414429 G-loss: 1.2583410739898682
Epoch: 1 of 2 D-loss: 0.4469526708126068 G-loss: 1.4499088525772095
Epoch: 1 of 2 D-loss: 0.5542303919792175 G-loss: 1.8941576480865479
Epoch: 1 of 2 D-loss: 0.5015590190887451 G-loss: 1.3728182315826416
Epoch: 1 of 2 D-loss: 0.5444722771644592 G-loss: 1.3285455703735352
Epoch: 1 of 2 D-loss: 2.2170002460479736 G-loss: 0.179045632481575

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [24]:
batch_size = 32
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch: 0 of 1 D-loss: 0.5920208692550659 G-loss: 1.791678786277771
Epoch: 0 of 1 D-loss: 0.7444042563438416 G-loss: 1.1127371788024902
Epoch: 0 of 1 D-loss: 1.215259313583374 G-loss: 0.9635317325592041
Epoch: 0 of 1 D-loss: 1.0903016328811646 G-loss: 0.7805575132369995
Epoch: 0 of 1 D-loss: 0.7637667655944824 G-loss: 1.1026912927627563
Epoch: 0 of 1 D-loss: 1.0774574279785156 G-loss: 0.7360586524009705
Epoch: 0 of 1 D-loss: 0.7162593007087708 G-loss: 1.1770133972167969
Epoch: 0 of 1 D-loss: 1.0197625160217285 G-loss: 0.8000112175941467
Epoch: 0 of 1 D-loss: 1.2226815223693848 G-loss: 1.1235119104385376
Epoch: 0 of 1 D-loss: 1.1109426021575928 G-loss: 1.240807294845581
Epoch: 0 of 1 D-loss: 1.4843178987503052 G-loss: 0.6795276403427124
Epoch: 0 of 1 D-loss: 1.1894965171813965 G-loss: 0.7749118804931641
Epoch: 0 of 1 D-loss: 1.3176822662353516 G-loss: 0.8201372623443604
Epoch: 0 of 1 D-loss: 1.1157760620117188 G-loss: 0.7833157181739807
Epoch: 0 of 1 D-loss: 1.2702891826629639 G-loss: 0.9329534769058228
Epoch: 0 of 1 D-loss: 1.2597744464874268 G-loss: 0.7662333250045776
Epoch: 0 of 1 D-loss: 1.001079797744751 G-loss: 0.9559124112129211
Epoch: 0 of 1 D-loss: 0.9662596583366394 G-loss: 0.9404380321502686
Epoch: 0 of 1 D-loss: 1.1201286315917969 G-loss: 0.9082478284835815
Epoch: 0 of 1 D-loss: 1.2203046083450317 G-loss: 0.6568059921264648
Epoch: 0 of 1 D-loss: 1.1227796077728271 G-loss: 1.2246382236480713
Epoch: 0 of 1 D-loss: 1.1945304870605469 G-loss: 0.6708744168281555
Epoch: 0 of 1 D-loss: 0.9179527759552002 G-loss: 1.2477495670318604
Epoch: 0 of 1 D-loss: 1.0239038467407227 G-loss: 1.0595440864562988
Epoch: 0 of 1 D-loss: 1.0588971376419067 G-loss: 1.0382285118103027
Epoch: 0 of 1 D-loss: 1.0875639915466309 G-loss: 0.8861286044120789
Epoch: 0 of 1 D-loss: 1.1750457286834717 G-loss: 0.6524596214294434
Epoch: 0 of 1 D-loss: 0.9812599420547485 G-loss: 1.2729606628417969
Epoch: 0 of 1 D-loss: 1.0662869215011597 G-loss: 1.1077021360397339
Epoch: 0 of 1 D-loss: 1.2749671936035156 G-loss: 0.7873585224151611
Epoch: 0 of 1 D-loss: 1.1209286451339722 G-loss: 0.9083850979804993
Epoch: 0 of 1 D-loss: 0.9976792931556702 G-loss: 1.0058624744415283
Epoch: 0 of 1 D-loss: 1.0983167886734009 G-loss: 1.0107146501541138
Epoch: 0 of 1 D-loss: 1.0797837972640991 G-loss: 0.8207824230194092
Epoch: 0 of 1 D-loss: 1.295471429824829 G-loss: 0.9446752071380615
Epoch: 0 of 1 D-loss: 1.1198017597198486 G-loss: 0.77696293592453
Epoch: 0 of 1 D-loss: 1.1550421714782715 G-loss: 0.6029515266418457
Epoch: 0 of 1 D-loss: 1.182889461517334 G-loss: 0.8296576738357544
Epoch: 0 of 1 D-loss: 1.1530239582061768 G-loss: 0.7972840666770935
Epoch: 0 of 1 D-loss: 0.9037187695503235 G-loss: 0.8026361465454102
Epoch: 0 of 1 D-loss: 1.0871303081512451 G-loss: 0.7956323623657227
Epoch: 0 of 1 D-loss: 1.0842387676239014 G-loss: 1.1443579196929932
Epoch: 0 of 1 D-loss: 1.1277942657470703 G-loss: 0.7196594476699829
Epoch: 0 of 1 D-loss: 0.9920175671577454 G-loss: 1.0312176942825317
Epoch: 0 of 1 D-loss: 1.1603097915649414 G-loss: 0.7141101956367493
Epoch: 0 of 1 D-loss: 1.4161752462387085 G-loss: 0.5226151943206787
Epoch: 0 of 1 D-loss: 1.0839369297027588 G-loss: 0.7743455171585083
Epoch: 0 of 1 D-loss: 1.274594783782959 G-loss: 0.6414002180099487
Epoch: 0 of 1 D-loss: 1.2785784006118774 G-loss: 0.5487960577011108
Epoch: 0 of 1 D-loss: 0.9969111084938049 G-loss: 0.864539623260498
Epoch: 0 of 1 D-loss: 1.2078067064285278 G-loss: 0.5523420572280884
Epoch: 0 of 1 D-loss: 0.90580153465271 G-loss: 1.166633129119873
Epoch: 0 of 1 D-loss: 1.1130248308181763 G-loss: 0.9389052391052246
Epoch: 0 of 1 D-loss: 1.4024081230163574 G-loss: 0.5419654250144958
Epoch: 0 of 1 D-loss: 1.0624185800552368 G-loss: 1.0265671014785767
Epoch: 0 of 1 D-loss: 1.510887622833252 G-loss: 0.4908890724182129
Epoch: 0 of 1 D-loss: 1.134190320968628 G-loss: 0.9539785385131836
Epoch: 0 of 1 D-loss: 1.302513599395752 G-loss: 0.7047775387763977
Epoch: 0 of 1 D-loss: 1.0990900993347168 G-loss: 0.8066443204879761
Epoch: 0 of 1 D-loss: 1.0273478031158447 G-loss: 1.012351632118225
Epoch: 0 of 1 D-loss: 1.0467381477355957 G-loss: 0.8001342415809631
Epoch: 0 of 1 D-loss: 0.9875299334526062 G-loss: 0.8457716703414917
Epoch: 0 of 1 D-loss: 1.1335997581481934 G-loss: 0.7137545347213745

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.