In [1]:
%matplotlib inline

from vnpy.trader.app.ctaStrategy.ctaBacktesting import BacktestingEngine, OptimizationSetting, MINUTE_DB_NAME
from vnpy.trader.app.ctaStrategy.strategy.strategyAtrRsi import AtrRsiStrategy

In [2]:
# 创建回测引擎对象
engine = BacktestingEngine()

In [3]:
# 设置回测使用的数据
engine.setBacktestingMode(engine.BAR_MODE)    # 设置引擎的回测模式为K线
engine.setDatabase(MINUTE_DB_NAME, 'IF0000')  # 设置使用的历史数据库
engine.setStartDate('20120101')               # 设置回测用的数据起始日期

In [4]:
# 配置回测引擎参数
engine.setSlippage(0.2)     # 设置滑点为股指1跳
engine.setRate(0.3/10000)   # 设置手续费万0.3
engine.setSize(300)         # 设置股指合约大小 
engine.setPriceTick(0.2)    # 设置股指最小价格变动   
engine.setCapital(1000000)  # 设置回测本金

In [5]:
# 在引擎中创建策略对象
d = {'atrLength': 11}                     # 策略参数配置
engine.initStrategy(AtrRsiStrategy, d)    # 创建策略对象

In [6]:
# 运行回测
engine.runBacktesting()          # 运行回测


2017-08-23 22:46:29.700000	开始载入数据
2017-08-23 22:46:29.790000	载入完成,数据量:31455
2017-08-23 22:46:29.790000	开始回测
2017-08-23 22:46:29.809000	策略初始化完成
2017-08-23 22:46:29.809000	策略启动完成
2017-08-23 22:46:29.809000	开始回放数据
2017-08-23 22:46:31.487000	数据回放结束

In [7]:
# 显示逐日回测结果
df = engine.showDailyResult()


2017-08-23 22:46:33.876000	计算按日统计结果
2017-08-23 22:46:33.907000	------------------------------
2017-08-23 22:46:33.907000	首个交易日:	2012-01-11
2017-08-23 22:46:33.907000	最后交易日:	2012-06-29
2017-08-23 22:46:33.907000	总交易日:	112
2017-08-23 22:46:33.907000	盈利交易日	48
2017-08-23 22:46:33.907000	亏损交易日:	64
2017-08-23 22:46:33.907000	起始资金:	1000000
2017-08-23 22:46:33.907000	结束资金:	879,365.29
2017-08-23 22:46:33.907000	总收益率:	-12.06
2017-08-23 22:46:33.907000	总盈亏:	-120,634.71
2017-08-23 22:46:33.907000	最大回撤: 	-138,853.38
2017-08-23 22:46:33.907000	总手续费:	9,934.71
2017-08-23 22:46:33.907000	总滑点:	25,980.0
2017-08-23 22:46:33.907000	总成交金额:	331,156,920.0
2017-08-23 22:46:33.907000	总成交笔数:	433.0
2017-08-23 22:46:33.907000	日均盈亏:	-1,077.1
2017-08-23 22:46:33.907000	日均手续费:	88.7
2017-08-23 22:46:33.907000	日均滑点:	231.96
2017-08-23 22:46:33.907000	日均成交金额:	2,956,758.21
2017-08-23 22:46:33.907000	日均成交笔数:	3.87
2017-08-23 22:46:33.908000	日均收益率:	-0.1%
2017-08-23 22:46:33.908000	收益标准差:	0.98%
2017-08-23 22:46:33.908000	Sharpe Ratio:	-1.66

In [8]:
# 显示逐笔回测结果
engine.showBacktestingResult()


2017-08-23 22:46:39.856000	计算回测结果
2017-08-23 22:46:39.863000	------------------------------
2017-08-23 22:46:39.863000	第一笔交易:	2012-01-11 10:18:00
2017-08-23 22:46:39.863000	最后一笔交易:	2012-06-29 11:30:00
2017-08-23 22:46:39.863000	总交易次数:	217.0
2017-08-23 22:46:39.863000	总盈亏:	-120,716.82
2017-08-23 22:46:39.863000	最大回撤: 	-135,300.01
2017-08-23 22:46:39.863000	平均每笔盈利:	-556.3
2017-08-23 22:46:39.863000	平均每笔滑点:	120.0
2017-08-23 22:46:39.863000	平均每笔佣金:	45.88
2017-08-23 22:46:39.863000	胜率		33.18%
2017-08-23 22:46:39.863000	盈利交易平均值	6,203.36
2017-08-23 22:46:39.863000	亏损交易平均值	-3,912.82
2017-08-23 22:46:39.863000	盈亏比:	1.59

In [9]:
# 显示前10条成交记录
for i in range(10):
    print engine.tradeDict[str(i+1)].__dict__


{'orderID': '1', 'direction': u'\u591a', 'gatewayName': '', 'tradeID': '1', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '09:18:00', 'rawData': None, 'vtTradeID': '1', 'offset': u'\u5f00\u4ed3', 'vtOrderID': '1', 'dt': datetime.datetime(2012, 1, 11, 9, 18), 'price': 2464.4, 'vtSymbol': ''}
{'orderID': '2', 'direction': u'\u7a7a', 'gatewayName': '', 'tradeID': '2', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '10:18:00', 'rawData': None, 'vtTradeID': '2', 'offset': u'\u5e73\u4ed3', 'vtOrderID': '2', 'dt': datetime.datetime(2012, 1, 11, 10, 18), 'price': 2448.8, 'vtSymbol': ''}
{'orderID': '3', 'direction': u'\u7a7a', 'gatewayName': '', 'tradeID': '3', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '10:19:00', 'rawData': None, 'vtTradeID': '3', 'offset': u'\u5f00\u4ed3', 'vtOrderID': '3', 'dt': datetime.datetime(2012, 1, 11, 10, 19), 'price': 2448.4, 'vtSymbol': ''}
{'orderID': '4', 'direction': u'\u591a', 'gatewayName': '', 'tradeID': '4', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '14:21:00', 'rawData': None, 'vtTradeID': '4', 'offset': u'\u5e73\u4ed3', 'vtOrderID': '4', 'dt': datetime.datetime(2012, 1, 11, 14, 21), 'price': 2456.2000000000003, 'vtSymbol': ''}
{'orderID': '5', 'direction': u'\u591a', 'gatewayName': '', 'tradeID': '5', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '14:22:00', 'rawData': None, 'vtTradeID': '5', 'offset': u'\u5f00\u4ed3', 'vtOrderID': '5', 'dt': datetime.datetime(2012, 1, 11, 14, 22), 'price': 2455.6, 'vtSymbol': ''}
{'orderID': '6', 'direction': u'\u7a7a', 'gatewayName': '', 'tradeID': '6', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '14:57:00', 'rawData': None, 'vtTradeID': '6', 'offset': u'\u5e73\u4ed3', 'vtOrderID': '6', 'dt': datetime.datetime(2012, 1, 11, 14, 57), 'price': 2444.0, 'vtSymbol': ''}
{'orderID': '7', 'direction': u'\u7a7a', 'gatewayName': '', 'tradeID': '7', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '14:58:00', 'rawData': None, 'vtTradeID': '7', 'offset': u'\u5f00\u4ed3', 'vtOrderID': '7', 'dt': datetime.datetime(2012, 1, 11, 14, 58), 'price': 2445.8, 'vtSymbol': ''}
{'orderID': '8', 'direction': u'\u591a', 'gatewayName': '', 'tradeID': '8', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '09:51:00', 'rawData': None, 'vtTradeID': '8', 'offset': u'\u5e73\u4ed3', 'vtOrderID': '8', 'dt': datetime.datetime(2012, 1, 12, 9, 51), 'price': 2452.8, 'vtSymbol': ''}
{'orderID': '9', 'direction': u'\u591a', 'gatewayName': '', 'tradeID': '9', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '09:52:00', 'rawData': None, 'vtTradeID': '9', 'offset': u'\u5f00\u4ed3', 'vtOrderID': '9', 'dt': datetime.datetime(2012, 1, 12, 9, 52), 'price': 2452.0, 'vtSymbol': ''}
{'orderID': '10', 'direction': u'\u7a7a', 'gatewayName': '', 'tradeID': '10', 'exchange': '', 'symbol': '', 'volume': 1, 'tradeTime': '10:31:00', 'rawData': None, 'vtTradeID': '10', 'offset': u'\u5e73\u4ed3', 'vtOrderID': '10', 'dt': datetime.datetime(2012, 1, 12, 10, 31), 'price': 2455.2000000000003, 'vtSymbol': ''}

In [ ]:
# 优化配置
setting = OptimizationSetting()                 # 新建一个优化任务设置对象
setting.setOptimizeTarget('capital')            # 设置优化排序的目标是策略净盈利
setting.addParameter('atrLength', 12, 20, 2)    # 增加第一个优化参数atrLength,起始12,结束20,步进2
setting.addParameter('atrMa', 20, 30, 5)        # 增加第二个优化参数atrMa,起始20,结束30,步进5
setting.addParameter('rsiLength', 5)            # 增加一个固定数值的参数

# 执行多进程优化
import time
engine.runParallelOptimization(AtrRsiStrategy, setting)
print u'耗时:%s' %(time.time()-start)

In [ ]: