In [1]:
# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD 3 clause
from __future__ import print_function
import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import pylab as pl
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.utils.extmath import density
from sklearn import metrics
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
# parse commandline arguments
op = OptionParser()
op.add_option("--report",
action="store_true", dest="print_report",
help="Print a detailed classification report.")
op.add_option("--chi2_select",
action="store", type="int", dest="select_chi2",
help="Select some number of features using a chi-squared test")
op.add_option("--confusion_matrix",
action="store_true", dest="print_cm",
help="Print the confusion matrix.")
op.add_option("--top10",
action="store_true", dest="print_top10",
help="Print ten most discriminative terms per class"
" for every classifier.")
op.add_option("--all_categories",
action="store_true", dest="all_categories",
help="Whether to use all categories or not.")
op.add_option("--use_hashing",
action="store_true",
help="Use a hashing vectorizer.")
op.add_option("--n_features",
action="store", type=int, default=2 ** 16,
help="n_features when using the hashing vectorizer.")
op.add_option("--filtered",
action="store_true",
help="Remove newsgroup information that is easily overfit: "
"headers, signatures, and quoting.")
(opts, args) = op.parse_args()
if len(args) > 0:
op.error("this script takes no arguments.")
sys.exit(1)
print(__doc__)
op.print_help()
print()
###############################################################################
# Load some categories from the training set
if opts.all_categories:
categories = None
else:
categories = [
'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',
]
if opts.filtered:
remove = ('headers', 'footers', 'quotes')
else:
remove = ()
print("Loading 20 newsgroups dataset for categories:")
print(categories if categories else "all")
data_train = fetch_20newsgroups(subset='train', categories=categories,
shuffle=True, random_state=42,
remove=remove)
data_test = fetch_20newsgroups(subset='test', categories=categories,
shuffle=True, random_state=42,
remove=remove)
print('data loaded')
categories = data_train.target_names # for case categories == None
def size_mb(docs):
return sum(len(s.encode('utf-8')) for s in docs) / 1e6
data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)
print("%d documents - %0.3fMB (training set)" % (
len(data_train.data), data_train_size_mb))
print("%d documents - %0.3fMB (test set)" % (
len(data_test.data), data_test_size_mb))
print("%d categories" % len(categories))
print()
# split a training set and a test set
y_train, y_test = data_train.target, data_test.target
print("Extracting features from the training dataset using a sparse vectorizer")
t0 = time()
if opts.use_hashing:
vectorizer = HashingVectorizer(stop_words='english', non_negative=True,
n_features=opts.n_features)
X_train = vectorizer.transform(data_train.data)
else:
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
X_train = vectorizer.fit_transform(data_train.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_train.shape)
print()
print("Extracting features from the test dataset using the same vectorizer")
t0 = time()
X_test = vectorizer.transform(data_test.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_test.shape)
print()
if opts.select_chi2:
print("Extracting %d best features by a chi-squared test" %
opts.select_chi2)
t0 = time()
ch2 = SelectKBest(chi2, k=opts.select_chi2)
X_train = ch2.fit_transform(X_train, y_train)
X_test = ch2.transform(X_test)
print("done in %fs" % (time() - t0))
print()
def trim(s):
"""Trim string to fit on terminal (assuming 80-column display)"""
return s if len(s) <= 80 else s[:77] + "..."
# mapping from integer feature name to original token string
if opts.use_hashing:
feature_names = None
else:
feature_names = np.asarray(vectorizer.get_feature_names())
###############################################################################
# Benchmark classifiers
def benchmark(clf):
print('_' * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print("train time: %0.3fs" % train_time)
t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print("test time: %0.3fs" % test_time)
score = metrics.f1_score(y_test, pred)
print("f1-score: %0.3f" % score)
if hasattr(clf, 'coef_'):
print("dimensionality: %d" % clf.coef_.shape[1])
print("density: %f" % density(clf.coef_))
if opts.print_top10 and feature_names is not None:
print("top 10 keywords per class:")
for i, category in enumerate(categories):
top10 = np.argsort(clf.coef_[i])[-10:]
print(trim("%s: %s"
% (category, " ".join(feature_names[top10]))))
print()
if opts.print_report:
print("classification report:")
print(metrics.classification_report(y_test, pred,
target_names=categories))
if opts.print_cm:
print("confusion matrix:")
print(metrics.confusion_matrix(y_test, pred))
print()
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time
results = []
for clf, name in (
(RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
(Perceptron(n_iter=50), "Perceptron"),
(PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
(KNeighborsClassifier(n_neighbors=10), "kNN")):
print('=' * 80)
print(name)
results.append(benchmark(clf))
for penalty in ["l2", "l1"]:
print('=' * 80)
print("%s penalty" % penalty.upper())
# Train Liblinear model
results.append(benchmark(LinearSVC(loss='l2', penalty=penalty,
dual=False, tol=1e-3)))
# Train SGD model
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
penalty=penalty)))
# Train SGD with Elastic Net penalty
print('=' * 80)
print("Elastic-Net penalty")
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
penalty="elasticnet")))
# Train NearestCentroid without threshold
print('=' * 80)
print("NearestCentroid (aka Rocchio classifier)")
results.append(benchmark(NearestCentroid()))
# Train sparse Naive Bayes classifiers
print('=' * 80)
print("Naive Bayes")
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))
class L1LinearSVC(LinearSVC):
def fit(self, X, y):
# The smaller C, the stronger the regularization.
# The more regularization, the more sparsity.
self.transformer_ = LinearSVC(penalty="l1",
dual=False, tol=1e-3)
X = self.transformer_.fit_transform(X, y)
return LinearSVC.fit(self, X, y)
def predict(self, X):
X = self.transformer_.transform(X)
return LinearSVC.predict(self, X)
print('=' * 80)
print("LinearSVC with L1-based feature selection")
results.append(benchmark(L1LinearSVC()))
# make some plots
indices = np.arange(len(results))
results = [[x[i] for x in results] for i in range(4)]
clf_names, score, training_time, test_time = results
training_time = np.array(training_time) / np.max(training_time)
test_time = np.array(test_time) / np.max(test_time)
pl.figure(figsize=(12,8))
pl.title("Score")
pl.barh(indices, score, .2, label="score", color='r')
pl.barh(indices + .3, training_time, .2, label="training time", color='g')
pl.barh(indices + .6, test_time, .2, label="test time", color='b')
pl.yticks(())
pl.legend(loc='best')
pl.subplots_adjust(left=.25)
pl.subplots_adjust(top=.95)
pl.subplots_adjust(bottom=.05)
for i, c in zip(indices, clf_names):
pl.text(-.3, i, c)
pl.show()
In [2]:
%tb