In [1]:
from datetime import datetime
import math
import time
import tensorflow as tf
In [2]:
def conv_op(input_op, name, kh, kw, n_out, dh, dw, p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",shape=[kh, kw, n_in, n_out],dtype=tf.float32,initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op, kernel, (1,dh,dw,1),padding='SAME')
bias_init_val = tf.constant(0.0,shape=[n_out],dtype=tf.float32)
biases = tf.Variable(bias_init_val,trainable=True,name='b')
z = tf.nn.bias_add(conv,biases)
activation = tf.nn.relu(z,name=scope)
p += [kernel, biases]
return activation
In [3]:
def fc_op(input_op, name, n_out, p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",shape=[n_in,n_out],dtype= tf.float32,initializer=tf.contrib.layers.xavier_initializer())
biases = tf.Variable(tf.constant(0.1,shape=[n_out],dtype=tf.float32),name='b')
avtivation = tf.nn.relu_layer(input_op,kernel,biases,name=scope)
p += [kernel,biases]
return avtivation
In [4]:
def mpool_op(input_op,name, kh,kw,dh,dw):
return tf.nn.max_pool(input_op,ksize=[1,kh,kw,1],strides=[1,dh,dw,1],padding='SAME',name=name)
In [5]:
def inference_op(input_op,keep_prob):
p = []
conv1_1 = conv_op(input_op,name="conv1_1",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)
conv1_2 = conv_op(conv1_1,name="conv1_2",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)
pool1 = mpool_op(conv1_2,name="pool1",kh=2,kw=2,dw=2,dh=2)
conv2_1 = conv_op(pool1,name="conv2_1",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)
conv2_2 = conv_op(conv2_1,name="conv2_2",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)
pool2 = mpool_op(conv2_2,name="pool2",kh=2,kw=2,dh=2,dw=2)
conv3_1 = conv_op(pool2,name="conv3_1",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
conv3_2 = conv_op(conv3_1,name="conv3_2",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
conv3_3 = conv_op(conv3_2,name="conv3_3",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
pool3 = mpool_op(conv3_3,name="pool3",kh=2,kw=2,dh=2,dw=2)
conv4_1 = conv_op(pool3,name="conv4_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv4_2 = conv_op(conv4_1,name="conv4_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv4_3 = conv_op(conv4_2,name="conv4_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
pool4 = mpool_op(conv4_3,name="pool4",kh=2,kw=2,dh=2,dw=2)
conv5_1 = conv_op(pool4,name="conv5_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv5_2 = conv_op(conv5_1,name="conv5_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv5_3 = conv_op(conv5_2,name="conv5_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
pool5 = mpool_op(conv5_3,name="pool5",kh=2,kw=2,dh=2,dw=2)
shp = pool5.get_shape()
flattened_shape = shp[1].value * shp[2].value * shp[3].value
resh1 = tf.reshape(pool5,[-1,flattened_shape],name="resh1")
fc6 = fc_op(resh1,name="fc6",n_out=4096,p=p)
fc6_drop = tf.nn.dropout(fc6,keep_prob,name="fc6_drop")
fc7 = fc_op(fc6_drop,name="fc7",n_out=4096,p=p)
fc7_drop = tf.nn.dropout(fc7,keep_prob,name="fc7_drop")
fc8 = fc_op(fc7_drop,name="fc8",n_out=1000,p=p)
softmax=tf.nn.softmax(fc8)
predictions = tf.argmax(softmax,1)
return predictions,softmax,fc8,p
In [6]:
def time_tensprflow_run(session,target,feed,info_string):
num_step_burn_in =10
total_duration = 0.0
total_duration_squared = 0.0
for i in range(num_batches+num_step_burn_in):
start_time =time.time()
_ = session.run(target,feed_dict=feed)
duration = time.time()-start_time
if i >= num_step_burn_in:
if not i%10:
print('%s: step %d, duration = %.3f' % (datetime.now(),i-num_step_burn_in,duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print('%s: %s across %d step, %.3f +/- %.3f sec/batch' % (datetime.now(),info_string,num_batches,mn,sd))
In [7]:
def run_benchmark():
with tf.Graph().as_default():
image_size = 224
images = tf.Variable(tf.random_normal([batch_size,
image_size,
image_size,3],
dtype=tf.float32,
stddev=1e-1))
keep_prob = tf.placeholder(tf.float32)
predictions,softmax,fc8,p = inference_op(images,keep_prob)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
time_tensprflow_run(sess,predictions,{keep_prob:1.0},"Forward")
objective = tf.nn.l2_loss(fc8)
grad = tf.gradients(objective,p)
time_tensprflow_run(sess,grad,{keep_prob:0.5},"Forward-backward")
batch_size = 32
num_batches = 100
run_benchmark()
In [ ]:
def conv_op(input_op, name, kh, kw, n_out, dh, dw, p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",shape=[kh, kw, n_in, n_out],dtype=tf.float32,initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op, kernel, (1,dh,dw,1),padding='SAME')
bias_init_val = tf.constant(0.0,shape=[n_out],dtype=tf.float32)
biases = tf.Variable(bias_init_val,trainable=True,name='b')
z = tf.nn.bias_add(conv,biases)
activation = tf.nn.relu(z,name=scope)
p += [kernel, biases]
return activation
In [ ]:
def fc_op(input_op, name, n_out, p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",shape=[n_in,n_out],dtype= tf.float32,initializer=tf.contrib.layers.xavier_initializer())
biases = tf.Variable(tf.constant(0.1,shape=[n_out],dtype=tf.float32),name='b')
avtivation = tf.nn.relu_layer(input_op,kernel,biases,name=scope)
p += [kernel,biases]
return avtivation
In [ ]:
def mpool_op(input_op,name, kh,kw,dh,dw):
return tf.nn.max_pool(input_op,ksize=[1,kh,kw,1],strides=[1,dh,dw,1],padding='SAME',name=name)
In [ ]:
def inference_op(input_op,keep_prob):
p = []
conv1_1 = conv_op(input_op,name="conv1_1",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)
conv1_2 = conv_op(conv1_1,name="conv1_2",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)
pool1 = mpool_op(conv1_2,name="pool1",kh=2,kw=2,dw=2,dh=2)
conv2_1 = conv_op(pool1,name="conv2_1",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)
conv2_2 = conv_op(conv2_1,name="conv2_2",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)
pool2 = mpool_op(conv2_2,name="pool2",kh=2,kw=2,dh=2,dw=2)
conv3_1 = conv_op(pool2,name="conv3_1",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
conv3_2 = conv_op(conv3_1,name="conv3_2",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
conv3_3 = conv_op(conv3_2,name="conv3_3",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
pool3 = mpool_op(conv3_3,name="pool3",kh=2,kw=2,dh=2,dw=2)
conv4_1 = conv_op(pool3,name="conv4_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv4_2 = conv_op(conv4_1,name="conv4_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv4_3 = conv_op(conv4_2,name="conv4_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
pool4 = mpool_op(conv4_3,name="pool4",kh=2,kw=2,dh=2,dw=2)
conv5_1 = conv_op(pool4,name="conv5_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv5_2 = conv_op(conv5_1,name="conv5_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv5_3 = conv_op(conv5_2,name="conv5_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
pool5 = mpool_op(conv5_3,name="pool5",kh=2,kw=2,dh=2,dw=2)
shp = pool5.get_shape()
flattened_shape = shp[1].value * shp[2].value * shp[3].value
resh1 = tf.reshape(pool5,[-1,flattened_shape],name="resh1")
fc6 = fc_op(resh1,name="fc6",n_out=4096,p=p)
fc6_drop = tf.nn.dropout(fc6,keep_prob,name="fc6_drop")
fc7 = fc_op(fc6_drop,name="fc7",n_out=4096,p=p)
fc7_drop = tf.nn.dropout(fc7,keep_prob,name="fc7_drop")
fc8 = fc_op(fc7_drop,name="fc8",n_out=1000,p=p)
softmax=tf.nn.softmax(fc8)
predictions = tf.argmax(softmax,1)
return predictions,softmax,fc8,p
In [ ]:
def time_tensprflow_run(session,target,feed,info_string):
num_step_burn_in =10
total_duration = 0.0
total_duration_squared = 0.0
for i in range(num_batches+num_step_burn_in):
start_time =time.time()
_ = session.run(target,feed_dict=feed)
duration = time.time()-start_time
if i >= num_step_burn_in:
if not i%10:
print('%s: step %d, duration = %.3f' % (datetime.now(),i-num_step_burn_in,duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print('%s: %s across %d step, %.3f +/- %.3f sec/batch' % (datetime.now(),info_string,num_batches,mn,sd))
In [ ]:
def run_benchmark():
with tf.Graph().as_default():
image_size = 224
images = tf.Variable(tf.random_normal([batch_size,
image_size,
image_size,3],
dtype=tf.float32,
stddev=1e-1))
keep_prob = tf.placeholder(tf.float32)
predictions,softmax,fc8,p = inference_op(images,keep_prob)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
time_tensprflow_run(sess,predictions,{keep_prob:1.0},"Forward")
objective = tf.nn.l2_loss(fc8)
grad = tf.gradients(objective,p)
time_tensprflow_run(sess,grad,{keep_prob:0.5},"Forward-backward")
In [ ]:
batch_size = 32
num_batches = 100
run_benchmark()
In [ ]:
In [ ]:
In [ ]: