In [1]:
from datetime import datetime
import math
import time
import tensorflow as tf

batch_size = 32
num_batches = 100

def print_activatitions(t):
    print(t.op.name,' ',t.get_shape().as_list())

def inference(images):
    parameters = []    #AlexNet中所有需要训练的模型,存入parameter
    with tf.name_scope('conv1') as scope:
        kernel = tf.Variable(tf.truncated_normal([11,11,3,64],dtype = tf.float32,stddev=1e-1),name='weights')
        conv = tf.nn.conv2d(images,kernel,[1,4,4,1],padding='SAME')
        biases = tf.Variable(tf.constant(0.0,shape=[64],dtype=tf.float32),trainable=True,name='biases')
        bias = tf.nn.bias_add(conv,biases)
        conv1 = tf.nn.relu(bias,name=scope)
        print_activatitions(conv1)
        parameters += [kernel,biases]
    lrn1 = tf.nn.lrn(conv1,4,bias=1.0,alpha=0.001/9,beta=0.75,name='lrn1')
    pool1 = tf.nn.max_pool(lrn1,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool1')
    print_activatitions(pool1)
    
    with tf.name_scope('conv2') as scope:
        kernel = tf.Variable(tf.truncated_normal([5,5,64,192],dtype=tf.float32,stddev=1e-1),name='weights')
        conv = tf.nn.conv2d(pool1,kernel,[1,1,1,1],padding='SAME')
        biases = tf.Variable(tf.constant(0.0,shape=[192],dtype=tf.float32),trainable=True,name='biases')
        bias = tf.nn.bias_add(conv,biases)
        conv2 = tf.nn.relu(bias,name=scope)
        parameters += [kernel,biases]
        print_activatitions(conv2)
    lrn2 = tf.nn.lrn(conv2,4,bias=1.0,alpha=0.001/9,beta=0.75,name='lrn2')
    pool2 = tf.nn.max_pool(lrn2,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool2')
    print_activatitions(pool2)
    
    with tf.name_scope('conv3') as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,192,384],dtype=tf.float32,stddev=1e-1),name='weights')
        conv = tf.nn.conv2d(pool2,kernel,[1,1,1,1],padding='SAME')
        biases = tf.Variable(tf.constant(0.0,shape=[384],dtype=tf.float32),trainable=True,name='biases')
        bias = tf.nn.bias_add(conv,biases)
        conv3 = tf.nn.relu(bias,name=scope)
        parameters += [kernel,biases]
        print_activatitions(conv3)
        
    with tf.name_scope('conv4') as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,384,256],dtype=tf.float32,stddev=1e-1),name='weights')
        conv = tf.nn.conv2d(conv3,kernel,[1,1,1,1],padding='SAME')
        biases = tf.Variable(tf.constant(0.0,shape=[256],dtype=tf.float32),trainable=True,name='biases')
        bias = tf.nn.bias_add(conv,biases)
        conv4 = tf.nn.relu(bias,name=scope)
        parameters += [kernel,biases]
        print_activatitions(conv4)
    
    with tf.name_scope('conv5') as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,256,256],dtype=tf.float32,stddev=1e-1),name='weights')
        conv = tf.nn.conv2d(conv4,kernel,[1,1,1,1],padding='SAME')
        biases = tf.Variable(tf.constant(0.0,shape=[256],dtype=tf.float32),trainable=True,name='biases')
        bias = tf.nn.bias_add(conv,biases)
        conv5 = tf.nn.relu(bias,name=scope)
        parameters += [kernel,biases]
        print_activatitions(conv5)
    pool5 = tf.nn.max_pool(conv5,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool5')
    print_activatitions(pool5)
    
    return pool5, parameters

def time_tensorflow_run(session,target,info_string):
    num_step_burn_in = 10    #10轮热身迭代
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in range(num_batches + num_step_burn_in):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time() - start_time
        if i >= num_step_burn_in:
            if not i%10:
                print('%s: step %d, duration = %.3f' % (datetime.now(),i - num_step_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration /num_batches
    vr = total_duration_squared / num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps,%.3f +/- %.3f sec / batch' % (datetime.now(),info_string,num_batches,mn,sd))

def run_benchmark():
    with tf.Graph().as_default():
        image_size = 224
        images = tf.Variable(tf.random_normal([batch_size,image_size,image_size,3],dtype=tf.float32,stddev=1e-1))
        pool5,parameters = inference(images)
        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)
        time_tensorflow_run(sess,pool5,"Forward")
        
        objective = tf.nn.l2_loss(pool5)
        grad = tf.gradients(objective,parameters)
        time_tensorflow_run(sess,grad,"Forward-backward")
        print(parameters[:])

run_benchmark()


conv1   [32, 56, 56, 64]
pool1   [32, 27, 27, 64]
conv2   [32, 27, 27, 192]
pool2   [32, 13, 13, 192]
conv3   [32, 13, 13, 384]
conv4   [32, 13, 13, 256]
conv5   [32, 13, 13, 256]
pool5   [32, 6, 6, 256]
2017-03-23 20:20:14.487715: step 0, duration = 0.026
2017-03-23 20:20:14.747079: step 10, duration = 0.026
2017-03-23 20:20:15.010218: step 20, duration = 0.027
2017-03-23 20:20:15.272958: step 30, duration = 0.026
2017-03-23 20:20:15.532149: step 40, duration = 0.026
2017-03-23 20:20:15.790460: step 50, duration = 0.026
2017-03-23 20:20:16.050993: step 60, duration = 0.026
2017-03-23 20:20:16.311949: step 70, duration = 0.026
2017-03-23 20:20:16.571001: step 80, duration = 0.026
2017-03-23 20:20:16.829746: step 90, duration = 0.026
2017-03-23 20:20:17.073001: Forward across 100 steps,0.026 +/- 0.001 sec / batch
2017-03-23 20:20:18.017540: step 0, duration = 0.077
2017-03-23 20:20:18.786431: step 10, duration = 0.076
2017-03-23 20:20:19.554582: step 20, duration = 0.077
2017-03-23 20:20:20.325462: step 30, duration = 0.076
2017-03-23 20:20:21.099638: step 40, duration = 0.078
2017-03-23 20:20:21.868834: step 50, duration = 0.077
2017-03-23 20:20:22.637847: step 60, duration = 0.077
2017-03-23 20:20:23.407891: step 70, duration = 0.077
2017-03-23 20:20:24.177443: step 80, duration = 0.077
2017-03-23 20:20:24.946711: step 90, duration = 0.079
2017-03-23 20:20:25.642256: Forward-backward across 100 steps,0.077 +/- 0.001 sec / batch
[<tensorflow.python.ops.variables.Variable object at 0x7f4b1a0321d0>, <tensorflow.python.ops.variables.Variable object at 0x7f4b1a03ab70>, <tensorflow.python.ops.variables.Variable object at 0x7f4b1a032048>, <tensorflow.python.ops.variables.Variable object at 0x7f4b1a00acc0>, <tensorflow.python.ops.variables.Variable object at 0x7f4b1a00a6a0>, <tensorflow.python.ops.variables.Variable object at 0x7f4b19ffafd0>, <tensorflow.python.ops.variables.Variable object at 0x7f4b19fa7550>, <tensorflow.python.ops.variables.Variable object at 0x7f4b19fb6da0>, <tensorflow.python.ops.variables.Variable object at 0x7f4b19fb6438>, <tensorflow.python.ops.variables.Variable object at 0x7f4b19fd6080>]

In [ ]:


In [ ]: