In [1]:
from tensorflow.examples.tutorials.mnist import input_data
In [2]:
mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)
In [3]:
print(mnist.train.images.shape, mnist.train.labels.shape)
In [4]:
print(mnist.test.images.shape,mnist.test.labels.shape)
In [5]:
print(mnist.validation.images.shape,mnist.validation.labels.shape)
In [6]:
mnist
Out[6]:
In [7]:
import tensorflow as tf
In [8]:
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32,[None,784])
In [9]:
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
In [10]:
y = tf.nn.softmax(tf.matmul(x,W)+b)
In [11]:
y_=tf.placeholder(tf.float32,[None,10])
In [12]:
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))
In [13]:
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
In [14]:
tf.global_variables_initializer().run()
In [15]:
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
train_step.run({x: batch_xs,y_:batch_ys})
In [16]:
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
In [17]:
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
In [18]:
print(accuracy.eval({x:mnist.test.images,y_:mnist.test.labels}))
In [ ]: