In [1]:
from tensorflow.examples.tutorials.mnist import input_data

In [2]:
mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)


Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

In [3]:
print(mnist.train.images.shape, mnist.train.labels.shape)


(55000, 784) (55000, 10)

In [4]:
print(mnist.test.images.shape,mnist.test.labels.shape)


(10000, 784) (10000, 10)

In [5]:
print(mnist.validation.images.shape,mnist.validation.labels.shape)


(5000, 784) (5000, 10)

In [6]:
mnist


Out[6]:
Datasets(train=<tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x7fdb1d2d46a0>, validation=<tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x7fdb1d2d44e0>, test=<tensorflow.contrib.learn.python.learn.datasets.mnist.DataSet object at 0x7fdb18a060b8>)

In [7]:
import tensorflow as tf

In [8]:
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32,[None,784])

In [9]:
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

In [10]:
y = tf.nn.softmax(tf.matmul(x,W)+b)

In [11]:
y_=tf.placeholder(tf.float32,[None,10])

In [12]:
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))

In [13]:
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

In [14]:
tf.global_variables_initializer().run()

In [15]:
for i in range(1000):
    batch_xs,batch_ys = mnist.train.next_batch(100)
    train_step.run({x: batch_xs,y_:batch_ys})

In [16]:
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))

In [17]:
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

In [18]:
print(accuracy.eval({x:mnist.test.images,y_:mnist.test.labels}))


0.9206

In [ ]: