In [1]:
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Embedding, LSTM
from sklearn.model_selection import train_test_split
from keras.utils.np_utils import to_categorical
import re
In [2]:
data = pd.read_csv('Sentiment.csv')
data = data[['text', 'sentiment']]
data.columns
Out[2]:
In [3]:
data['text'] = data['text'].apply(lambda x: str(x))
data['text'] = data['text'].apply(lambda x: x.lower())
data['text'] = data['text'].apply((lambda x: re.sub('[^a-zA-z0-9\s]','',x)))
print(data[ data['sentiment'] == 'pos'].size)
print(data[ data['sentiment'] == 'cons'].size)
max_fatures = 2000
tokenizer = Tokenizer(num_words=max_fatures, split=' ')
tokenizer.fit_on_texts(data['text'].values)
X = tokenizer.texts_to_sequences(data['text'].values)
X = pad_sequences(X)
In [4]:
print(data)
data.iloc[[1]]['text']
Out[4]:
In [5]:
embed_dim = 128
lstm_out = 196
max_features=2000
model = Sequential()
model.add(Embedding(max_features, embed_dim, input_length=X.shape[1], dropout=0.2))
model.add(LSTM(lstm_out, dropout_U=0.2, dropout_W=0.2))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
In [6]:
Y = pd.get_dummies(data['sentiment']).values
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.33, random_state = 42)
print(X_train.shape,Y_train.shape)
print(X_test.shape,Y_test.shape)
In [7]:
batch_size = 128
model.fit(X_train, Y_train, epochs = 7, batch_size=batch_size, verbose = 2)
Out[7]:
In [8]:
validation_size = 10000
X_validate = X_test[-validation_size:]
Y_validate = Y_test[-validation_size:]
X_test = X_test[:-validation_size]
Y_test = Y_test[:-validation_size]
score,acc = model.evaluate(X_test, Y_test, verbose = 1, batch_size = batch_size)
print("score: %.2f" % (score))
print("acc: %.2f" % (acc))
In [9]:
pos_cnt, neg_cnt, pos_correct, neg_correct = 0, 0, 0, 0
for x in range(len(X_validate)):
result = model.predict(X_validate[x].reshape(1,X_test.shape[1]),batch_size=1,verbose = 2)[0]
if np.argmax(result) == np.argmax(Y_validate[x]):
if np.argmax(Y_validate[x]) == 0:
neg_correct += 1
else:
pos_correct += 1
if np.argmax(Y_validate[x]) == 0:
neg_cnt += 1
else:
pos_cnt += 1
print("pos_acc", pos_correct/pos_cnt*100, "%")
print("neg_acc", neg_correct/neg_cnt*100, "%")
In [11]:
model.save('lstm.h5')
In [ ]: