In [44]:
plt.rcdefaults()
# Typeface sizes
from matplotlib import rcParams
rcParams['axes.labelsize'] = 12
rcParams['xtick.labelsize'] = 12
rcParams['ytick.labelsize'] = 12
rcParams['legend.fontsize'] = 12
#rcParams['font.family'] = 'serif'
#rcParams['font.serif'] = ['Computer Modern Roman']
#rcParams['text.usetex'] = True

# Optimal figure size
WIDTH = 350.0  # the number latex spits out
FACTOR = 0.90  # the fraction of the width you'd like the figure to occupy
fig_width_pt  = WIDTH * FACTOR

inches_per_pt = 1.0 / 72.27
golden_ratio  = (np.sqrt(5) - 1.0) / 2.0  # because it looks good

fig_width_in  = fig_width_pt * inches_per_pt  # figure width in inches
fig_height_in = fig_width_in * golden_ratio   # figure height in inches
fig_dims      = [fig_width_in, fig_height_in] # fig dims as a list

rcParams['figure.figsize'] = fig_dims

In [6]:
%matplotlib inline

In [7]:
import pandas as pd
import matplotlib.pyplot as plt
pd.set_option('display.mpl_style', 'default')
import statsmodels.api as sm
import itertools

First, let's load the results from the small model of polled included in the default settings. This involves loading four animal files (live cows, dead cows, live bulls, and dead bulls). We will load them and merge them into a single data frame.


In [8]:
# We have 10 relicates for each simulation
for sim in xrange(1,11):
    # Load the individual history files
    lc = pd.read_csv('low_low/%s/cows_history_pryce_low_low_20.txt'%sim, sep='\t')
    dc = pd.read_csv('low_low/%s/dead_cows_history_pryce_low_low_20.txt'%sim, sep='\t')
    lb = pd.read_csv('low_low/%s/bulls_history_pryce_low_low_20.txt'%sim, sep='\t')
    db = pd.read_csv('low_low/%s/dead_bulls_history_pryce_low_low_20.txt'%sim, sep='\t')
    inbreeding = pd.read_csv('low_low/%s/pedigree_20.txt.solinb'%sim, delim_whitespace=True,
                             skipinitialspace=True, names=['animal','inbreeding'])
    # Stack the individual animal datasets
    allan = lc.append(dc.append(lb.append(db)))
    # Merge in the coefficients of inbreeding (Pandas defaults to an inner join)
    all_animals = pd.merge(allan, inbreeding, on='animal')
    all_animals['rep'] = sim
    if sim == 1:
        all_replicates = all_animals
    else:
        all_replicates = pd.concat([all_replicates, all_animals])
# Print first few lines of dataframe
#all_animals.head()

In [9]:
# Now load the Pryce+recessives data so that we can compare EBV.
# We have 10 relicates for each simulation
for sim in xrange(1,11):
    # Load the individual history files
    lc = pd.read_csv('low_low/%s/cows_history_pryce_r_low_low_20.txt'%sim, sep='\t')
    dc = pd.read_csv('low_low/%s/dead_cows_history_pryce_r_low_low_20.txt'%sim, sep='\t')
    lb = pd.read_csv('low_low/%s/bulls_history_pryce_r_low_low_20.txt'%sim, sep='\t')
    db = pd.read_csv('low_low/%s/dead_bulls_history_pryce_r_low_low_20.txt'%sim, sep='\t')
    inbreeding = pd.read_csv('low_low/%s/pedigree_20.txt.solinb'%sim, delim_whitespace=True,
                             skipinitialspace=True, names=['animal','inbreeding'])
    # Stack the individual animal datasets
    allan_r = lc.append(dc.append(lb.append(db)))
    # Merge in the coefficients of inbreeding (Pandas defaults to an inner join)
    all_animals_r = pd.merge(allan_r, inbreeding, on='animal')
    all_animals_r['rep'] = sim
    if sim == 1:
        all_replicates_r = all_animals_r
    else:
        all_replicates_r = pd.concat([all_replicates_r, all_animals_r])
# Print first few lines of dataframe
#all_animals.head()

In [10]:
all_replicates['rep'].value_counts()


Out[10]:
5     1794750
4     1794686
1     1794633
10    1794548
7     1794514
3     1794383
9     1794356
8     1794352
6     1794259
2     1793917
dtype: int64

In [11]:
# N = culled to maintain herd size
# A = culled for age
# R = culled because of lethal disorder
all_animals['cause'].value_counts()


Out[11]:
N    1622343
A     106842
dtype: int64

How many males and females are in the dataset?


In [12]:
all_animals['sex'].value_counts()


Out[12]:
F    914349
M    880199
dtype: int64

If we want to plot the average TBV by sex for each generation we first need to construct a dataframe that has the average (mean) TBV for each group-sex combination.


In [13]:
grouped = all_animals.groupby(['sex','born']).mean()
#grouped
# Bulls and cows don't necessarily have identical sets of
# birth generations for founders since those values are
# randomly generated and bulls live longer than cows. In
# order to get the plots to work correctly, we need to
# reindex the aggregated dataframe.
full_index = []
for x in ['F','M']:
    for g in all_animals['born'].unique():
        full_index.append((x,g))
grouped = grouped.reindex(full_index).reset_index()
grouped = grouped.add_suffix('').reset_index()
grouped = grouped.sort(['level_0','level_1'])
#grouped

Now group the data for the Pryce+recessives scenario


In [14]:
grouped_r = all_animals_r.groupby(['sex','born']).mean()
full_index = []
for x in ['F','M']:
    for g in all_animals['born'].unique():
        full_index.append((x,g))
grouped_r = grouped_r.reindex(full_index).reset_index()
grouped_r = grouped_r.add_suffix('').reset_index()
grouped_r = grouped_r.sort(['level_0','level_1'])

In [15]:
print 'Average TBV by generation of birth and animal sex for the Pryce scenario'
all_animals.groupby(['sex','born']).mean()['TBV']


Average TBV by generation of birth and animal sex for the Pryce scenario
Out[15]:
sex  born
F    -4        -0.923749
     -3         0.525604
     -2         3.454259
     -1        -0.183401
      0         0.939376
      1       139.533261
      2       368.224371
      3       564.001710
      4       745.942073
      5       962.920638
      6      1157.109515
      7      1366.135987
      8      1581.086308
      9      1799.021012
      10     2018.848632
      11     2249.998169
      12     2463.310424
      13     2680.773298
      14     2908.220360
      15     3123.572910
      16     3351.053788
      17     3572.334670
      18     3789.131046
      19     3996.456465
      20     4180.063177
M    -9       304.995438
     -8       234.998203
     -7       259.598682
     -6       291.521337
     -5       292.107179
     -4       332.650142
     -3       324.643586
     -2       280.806157
     -1       244.945781
      0       259.692502
      1       142.068960
      2       366.886040
      3       563.647617
      4       746.008032
      5       961.433492
      6      1154.621695
      7      1364.468824
      8      1582.376395
      9      1797.984089
      10     2019.532688
      11     2247.546508
      12     2461.514881
      13     2680.140120
      14     2906.876520
      15     3123.527331
      16     3348.717107
      17     3575.744977
      18     3786.792550
      19     3994.040437
      20     4228.289612
Name: TBV, Length: 55, dtype: float64

In [16]:
print 'Average TBV by generation of birth and animal sex for the Pryce+recessives scenario'
all_animals_r.groupby(['sex','born']).mean()['TBV']


Average TBV by generation of birth and animal sex for the Pryce+recessives scenario
Out[16]:
sex  born
F    -4         0.758515
     -3        -1.725193
     -2        -1.693832
     -1         3.428825
      0         4.451435
      1       123.659832
      2       362.558377
      3       554.548224
      4       753.143006
      5       952.544650
      6      1159.675945
      7      1368.245744
      8      1576.256847
      9      1788.813094
      10     2021.556888
      11     2231.079002
      12     2444.427641
      13     2670.917503
      14     2887.239024
      15     3110.983148
      16     3317.446055
      17     3540.642681
      18     3751.162707
      19     3987.114653
M    -9       341.380600
     -8       309.182023
     -7       337.581059
     -6       308.078176
     -5       248.364800
     -4       279.208672
     -3       288.748818
     -2       237.514054
     -1       302.694495
      0       279.336518
      1       123.535965
      2       356.879064
      3       556.828532
      4       753.479726
      5       955.244604
      6      1155.443649
      7      1368.751146
      8      1576.805446
      9      1793.519897
      10     2022.297861
      11     2232.587387
      12     2444.897240
      13     2670.195947
      14     2886.370532
      15     3110.860382
      16     3315.541780
      17     3539.509163
      18     3751.574581
      19     3987.837852
Name: TBV, Length: 53, dtype: float64

In [17]:
fig = plt.figure(figsize=fig_dims, dpi=300, facecolor='white')

# Set nicer limits
xmin ,xmax = 0, 30
ymin, ymax = 0, 0.25

ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('Generation')
ax.set_ylabel('True Breeding Value')
ax.plot(all_animals.groupby(['born']).mean()['TBV'], label='Pryce', linewidth=2)
ax.plot(all_animals_r.groupby(['born']).mean()['TBV'], label='Pryce+recessives', linewidth=2)
ax.legend(loc='best')

# Deal with ticks marks and labels
x_tick_locs = [t for t in xrange(0, 31, 5)]
x_tick_labels = [t for t in xrange(-10, 21, 5)]
xticks(x_tick_locs, x_tick_labels)

# Despine
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

# Plot and save
fig.tight_layout(pad=0.1)  # Make the figure use all available whitespace
fig.savefig('/Users/jcole/Documents/AIPL/Genomics/Recessives/low-low-average-tbv-by-gen-pryce-rec.png', dpi=300)


Looking at the plot below, it looks as though I may need to bump the difference between cows and bulls in order to separate the two groups a little more. In these results, it looks as though the TBV for the groups don't differ.


In [18]:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
#labels = ax.set_xticklabels(grouped['level_1'].unique())
ax.set_title('Mean TBV for Bulls and Cows')
ax.set_xlabel('Generation')
ax.set_ylabel('True Breeding Value')
for key, grp in grouped.groupby(['level_0']):
    ax.plot(grp['TBV'], label=key)
ax.legend(loc='best')


Out[18]:
<matplotlib.legend.Legend at 0x10a756710>

In the plot above it looks as though the bulls are "losing" their genetic base advantage in the first generation in which calves are produced. That's because they're being bred to cows that are not a good as they are, on average. Also, this plot includes all animals, including calves that died and cows and bulls that were culled without producing any offspring. A plot of the TBV of parents would be more informative as far as genetic trend goes. In order to do that, we need to count the number of offspring for each parent and merge them back into the all_animals data frame.


In [19]:
# How many calves did each bull sire?
sire_counts = pd.DataFrame(all_animals['sire'].value_counts(), columns=['offspring'])
# The Series index is the bull ID, which we want to convert to a column in the
# DataFrame.
sire_counts['animal'] = sire_counts.index
# We want to drop animal 0 because that's the unknown base-population sire.
sire_counts = sire_counts[sire_counts['animal'] > 0]
len(sire_counts)


Out[19]:
356

In [20]:
# How many calves did each cow produce?
dam_counts = pd.DataFrame(all_animals['dam'].value_counts(), columns=['offspring'])
# The Series index is the bull ID, which we want to convert to a column in the
# DataFrame.
dam_counts['animal'] = dam_counts.index
# We want to drop animal 0 because that's the unknown base-population sire.
dam_counts = dam_counts[dam_counts['animal'] > 0]
len(dam_counts)


Out[20]:
632823

In [21]:
# Now we do some merging. We must use LEFT OUTER JOINs in order to retain all animals
# even if they weren't parents.
with_sires = pd.merge(all_animals, sire_counts, on='animal', how='left')
with_dams = pd.merge(with_sires, dam_counts, on='animal', how='left')
all_animals = with_dams
all_animals['sex'].value_counts()


Out[21]:
F    914349
M    880199
dtype: int64

In [22]:
# These are cows
all_animals['offspring_y'].value_counts()


Out[22]:
1    194831
2    141976
3    101124
6     75464
4     72831
5     46579
dtype: int64

In [23]:
# These are bulls
all_animals['offspring_x'].value_counts()


Out[23]:
5000    291
4999     56
4998      3
4993      1
2520      1
1620      1
119       1
7         1
1         1
dtype: int64

Is there something screwy going on? I don't expect cows to have thousands of offspring.

The thing is, we now have two different columns for the offspring counts, named "offspring_x" and "offspring_y". Can we just combine them using addition? (There's probably a clever way to do this in the join, but I don't know it.


In [24]:
all_animals['offspring_x'].fillna(0, inplace=True)
all_animals['offspring_y'].fillna(0, inplace=True)
all_animals['offspring'] = all_animals['offspring_x'] + all_animals['offspring_y']

What does the distribution of offspring counts look like?


In [25]:
parents = all_animals[all_animals['offspring'] > 0]
parents.hist(column='offspring', by='sex')


Out[25]:
array([<matplotlib.axes.AxesSubplot object at 0x10a715f10>,
       <matplotlib.axes.AxesSubplot object at 0x109383450>], dtype=object)

Now I think that we have everything we need in order to subset and plot genetic trend for parents, not just all animals.


In [26]:
grouped = parents.groupby(['sex','born']).mean()
full_index = []
for x in ['F','M']:
    for g in all_animals['born'].unique():
        full_index.append((x,g))
grouped = grouped.reindex(full_index).reset_index()
grouped = grouped.add_suffix('').reset_index()
grouped = grouped.sort(['level_0','level_1'])

In [27]:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.set_title('Mean TBV for Parents')
ax.set_xlabel('Generation')
ax.set_ylabel('True Breeding Value')
for key, grp in grouped.groupby(['level_0']):
    ax.plot(grp['TBV'], label=key)
ax.legend(loc='best')


Out[27]:
<matplotlib.legend.Legend at 0x10ab1f590>

I also want to see what the inbreeding looks like. Plot by generation.


In [28]:
fig = plt.figure(figsize=fig_dims, dpi=300, facecolor='white')

# Set nicer limits
xmin ,xmax = 0, 30
ymin, ymax = 0, 0.25

ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel('Generation')
ax.set_ylabel('Coefficient of inbreeding')
for key, grp in grouped.groupby(['level_0']):
    # This is producing the wrong labels on the x axis.
    if key == 'M': marker='s'
    else: marker = 'o'
    ax.plot(grp['inbreeding'], label=key, linewidth=2)
ax.legend(loc='best')

# Deal with ticks marks and labels
x_tick_locs = [t for t in xrange(0, 31, 5)]
x_tick_labels = [t for t in xrange(-10, 21, 5)]
xticks(x_tick_locs, x_tick_labels)

# Despine
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

# Plot and save
fig.tight_layout(pad=0.1)  # Make the figure use all available whitespace
fig.savefig('/Users/jcole/Documents/AIPL/Genomics/Recessives/low-low-inbreeding.png', dpi=300)


Load the four allele frequency files.


In [29]:
rec_names = ['gen',
             'Low, low']

# We have 10 relicates for each simulation
for sim in xrange(1,11):
    # Load the individual history files
    freqs_random = pd.read_csv('low_low/%s/minor_allele_frequencies_ran_low_low.txt'%sim, \
                       sep='\t', header=None, names=rec_names)

    freqs_toppct = pd.read_csv('low_low/%s/minor_allele_frequencies_toppct_low_low.txt'%sim, \
                       sep='\t', header=None, names=rec_names)

    freqs_pryce = pd.read_csv('low_low/%s/minor_allele_frequencies_pryce_low_low.txt'%sim, \
                       sep='\t', header=None, names=rec_names)

    freqs_rec = pd.read_csv('low_low/%s/minor_allele_frequencies_pryce_r_low_low.txt'%sim, \
                       sep='\t', header=None, names=rec_names)
    
    freqs_random['rep'] = sim
    freqs_toppct['rep'] = sim
    freqs_pryce['rep'] = sim
    freqs_rec['rep'] = sim
    
    if sim == 1:
        all_random = freqs_random
        all_toppct = freqs_toppct
        all_pryce = freqs_pryce
        all_rec = freqs_rec
    else:
        all_random = pd.concat([all_random, freqs_random])
        all_toppct = pd.concat([all_toppct, freqs_toppct])
        all_pryce = pd.concat([all_pryce, freqs_pryce])
        all_rec = pd.concat([all_rec, freqs_rec])

Now we have final allele frequencies for each of the 10 replicates. We need to take the mean over the replicates for each recessive and plot those.


In [30]:
grouped_random = all_random.groupby(['gen']).mean()
grouped_toppct = all_toppct.groupby(['gen']).mean()
grouped_pryce = all_pryce.groupby(['gen']).mean()
grouped_rec = all_rec.groupby(['gen']).mean()

Plot the minor allele frequencies.


In [46]:
#fig = plt.figure(figsize=fig_dims, dpi=300, facecolor='white')
fig = plt.figure(figsize=(16, 12), dpi=300, facecolor='white')

# Set nicer limits
xmin ,xmax = 0, 20
ymin, ymax = 0, 0.05
recessives = rec_names[1:]

# Compute the expected frequency for each generation.
expected = {}
for i, r in enumerate(recessives):
    expected[r] = []
    # Red and horned are NOT lethals
    if r in ['Horned', 'Red']:
        for g in xrange(0,21):
                if g == 0:
                    expected[r].append(grouped_random[r][g])
                else:
                    q0 = expected[r][g-1]
                    p0 = 1. - q0
                    q1 = (p0*q0) + q0**2
                    expected[r].append(q1)        
    # The others are
    else:
        for g in xrange(0,21):
                if g == 0:
                    expected[r].append(grouped_random[r][g])
                else:
                    q0 = expected[r][g-1]
                    p0 = 1. - q0
                    q1 = (p0*q0) / (p0**2 + (2*p0*q0))
                    expected[r].append(q1)

# Now, plot all the things.                
colors = itertools.cycle(['r', 'g', 'b','k'])
markers = itertools.cycle(['o', 'v', 's', 'd', '^', '*'])
ax = fig.add_subplot(2, 2, 1)
ax.set_title('Random')
ax.set_xlabel('Generation')
ax.set_ylabel('Allele Frequency')
# Despine
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
for i, r in enumerate(recessives):
    if r != 'Horned':
        ax.plot(grouped_random[r], label=r, marker=markers.next(), c=colors.next(), lw=1.5)
        # Deal with ticks marks and labels
        x_tick_locs = [t for t in xrange(0, 21, 5)]
        x_tick_labels = [t for t in xrange(0, 21, 5)]
        xticks(x_tick_locs, x_tick_labels)
        # Despine
        ax = gca()
        ax.spines['right'].set_color('none')
        ax.spines['top'].set_color('none')
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')
    ax.set_ylim(ymin,ymax)

colors = itertools.cycle(['r', 'g', 'b','k'])
markers = itertools.cycle(['o', 'v', 's', 'd', '^', '*'])
ax = fig.add_subplot(2, 2, 2)
ax.set_title('Truncation')
ax.set_xlabel('Generation')
ax.set_ylabel('Allele Frequency')
# Despine
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
for i, r in enumerate(recessives):
    if r != 'Horned':
        ax.plot(grouped_toppct[r], label=r, marker=markers.next(), c=colors.next(), lw=1.5)
        # Deal with ticks marks and labels
        x_tick_locs = [t for t in xrange(0, 21, 5)]
        x_tick_labels = [t for t in xrange(0, 21, 5)]
        xticks(x_tick_locs, x_tick_labels)
        # Despine
        ax = gca()
        ax.spines['right'].set_color('none')
        ax.spines['top'].set_color('none')
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')
    ax.set_ylim(ymin,ymax)

colors = itertools.cycle(['r', 'g', 'b','k'])
markers = itertools.cycle(['o', 'v', 's', 'd', '^', '*'])
ax = fig.add_subplot(2, 2, 3)
ax.set_title('Pryce')
ax.set_xlabel('Generation')
ax.set_ylabel('Allele Frequency')
# Despine
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
for i, r in enumerate(recessives):
    if r != 'Horned':
        ax.plot(grouped_pryce[r], label=r, marker=markers.next(), c=colors.next(), lw=1.5)
        # Deal with ticks marks and labels
        x_tick_locs = [t for t in xrange(0, 21, 5)]
        x_tick_labels = [t for t in xrange(0, 21, 5)]
        xticks(x_tick_locs, x_tick_labels)
        # Despine
        ax = gca()
        ax.spines['right'].set_color('none')
        ax.spines['top'].set_color('none')
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')
    ax.set_ylim(ymin,ymax)

colors = itertools.cycle(['r', 'g', 'b','k'])
markers = itertools.cycle(['o', 'v', 's', 'd', '^', '*'])
ax = fig.add_subplot(2, 2, 4)
ax.set_title('Pryce + recessives')
ax.set_xlabel('Generation')
ax.set_ylabel('Allele Frequency')
# Despine
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
for i, r in enumerate(recessives):
    if r != 'Horned':
        ax.plot(grouped_rec[r], label=r, marker=markers.next(), c=colors.next(), lw=1.5)
        # Deal with ticks marks and labels
        x_tick_locs = [t for t in xrange(0, 21, 5)]
        x_tick_labels = [t for t in xrange(0, 21, 5)]
        xticks(x_tick_locs, x_tick_labels)
        # Despine
        ax = gca()
        ax.spines['right'].set_color('none')
        ax.spines['top'].set_color('none')
        ax.xaxis.set_ticks_position('bottom')
        ax.yaxis.set_ticks_position('left')
    ax.set_ylim(ymin,ymax)

h, l = ax.get_legend_handles_labels()
leg = plt.figlegend(h, l, loc=(0.90, 0.8), fancybox=True)
rect = leg.get_frame()
rect.set_facecolor('white')
#suptitle = plt.suptitle('Allele Frequency Change Over Time for Several Mating Schemes', x = 0.5, y = 1.05, fontsize=18)

# Plot and save
#plt.tight_layout(pad=1., w_pad=0.5, h_pad=0.5)
fig.tight_layout(pad=0.1)  # Make the figure use all available whitespace
fig.savefig('/Users/jcole/Documents/AIPL/Genomics/Recessives/low-low-observed-allele-frequency-changes.png', dpi=300)


Let's try a small multiples-type of plot to show the actual versus expected frequencies.


In [47]:
fig = plt.figure(figsize=(16, 12), dpi=300, facecolor='white')

# Plot Pryce + recessives
colors = itertools.cycle(['r', 'g', 'b'])
for i, r in enumerate(recessives):
    ax = fig.add_subplot(1, 1, i)
    ax.set_title(r)
    ax.set_xlabel('Generation')
    ax.set_ylabel('Allele Frequency')
    ax.plot(grouped_rec[r], label='Observed', marker='o', c='k')
    ax.plot(expected[r], label='Expected', c='gray')
    ax.set_ylim(0.0, 0.05)
    legend(loc='best')
        
plt.tight_layout(pad=1., w_pad=0.5, h_pad=0.5)
fig.savefig('/Users/jcole/Documents/AIPL/Genomics/Recessives/low-low-act-vs-exp-rec.png', dpi=300)


Let's take a look at just the Pryce inbreeding adjustment, then. See if it's less messy.


In [48]:
fig = plt.figure(figsize=(16, 12), dpi=300, facecolor='white')

# Plot Pryce + recessives
colors = itertools.cycle(['r', 'g', 'b'])
for i, r in enumerate(recessives):
    ax = fig.add_subplot(1, 1, i)
    ax.set_title(r)
    ax.set_xlabel('Generation')
    ax.set_ylabel('Allele Frequency')
    ax.plot(grouped_pryce[r], label='Observed', marker='o', c='k')
    ax.plot(expected[r], label='Expected', c='gray')
    ax.set_ylim(0.0, 0.05)
    legend(loc='best')
        
plt.tight_layout(pad=1., w_pad=0.5, h_pad=0.5)
fig.savefig('/Users/jcole/Documents/AIPL/Genomics/Recessives/low-low-act-vs-exp-pryce.png', dpi=300)


Now we're going to fit a linear regression to each recessive in each scenario. The frequency is the dependent variable, and the generation number is the independent variable.


In [34]:
def fit_line(x, y):
    """Return RegressionResults instance of best-fit line."""
    X = sm.add_constant(x)
    model = sm.OLS(y, X, missing='drop')
    fit = model.fit()
    return fit

In [35]:
grouped_random_fits = {}
for i, r in enumerate(recessives):
    fit = fit_line(grouped_random.index.values, grouped_random[r])
    grouped_random_fits[r] = fit

grouped_toppct_fits = {}
for i, r in enumerate(recessives):
    fit = fit_line(grouped_toppct.index.values, grouped_toppct[r])
    grouped_toppct_fits[r] = fit
    
grouped_pryce_fits = {}
for i, r in enumerate(recessives):
    fit = fit_line(grouped_pryce.index.values, grouped_pryce[r])
    grouped_pryce_fits[r] = fit
    
grouped_rec_fits = {}
for i, r in enumerate(recessives):
    fit = fit_line(grouped_rec.index.values, grouped_rec[r])
    grouped_rec_fits[r] = fit
    
expected_fits = {}
for i, r in enumerate(recessives):
    fit = fit_line(grouped_rec.index.values, expected[r])
    expected_fits[r] = fit

In [36]:
from scipy.special import stdtr
def test_slopes(fit1, fit2, debug=False):
    """Perform a t-test of regression slopes assuming unequal variances."""
    sigma_b1_b2 = math.sqrt( fit1.bse[1]**2 + fit2.bse[1]**2 )
    t = (fit1.params[1] - fit2.params[1]) / sigma_b1_b2
    df = fit1.nobs + fit2.nobs - 4
    pvalue = 2*stdtr(df, -abs(t))
    if debug:
        print 'sigma_b1_b2: ', sigma_b1_b2
        print 'fit1.params[1]', fit1.params[1]
        print 'fit2.params[1]', fit2.params[1]
        print 'fit1.params[1] - fit2.params[1]', fit1.params[1] - fit2.params[1]
        print 't: ', t
        print 'df: ', df
        print 'pvalue: ', pvalue
    
    return t, pvalue

In [37]:
print 'Random versus Pryce+recessives'
for i, r in enumerate(recessives):
    tval, pval = test_slopes(grouped_random_fits[r], grouped_rec_fits[r])
    if pval < 0.05/11.: significant = '****'
    else: significant = ''
    print '\t%s:\tt = \t%s\tp = \t%s\t%s' % ( r, tval, pval, significant )


Random versus Pryce+recessives
	Low, low:	t = 	12.2115204538	p = 	1.00301380271e-14	****

In [38]:
print 'Pryce versus Pryce+recessives'
print '\tTrait\tb0_pryce\t\tb0_rec\t\t\tFaster\tt-value\t\tp-value\t\t\tsig'
print '\t%s' % ( '-'*110 )
for i, r in enumerate(recessives):
    tval, pval = test_slopes(grouped_pryce_fits[r], grouped_rec_fits[r])
    if pval < 0.05/11.: significant = '****'
    else: significant = ''
    if grouped_rec_fits[r].params[1] > grouped_pryce_fits[r].params[1]: bigger = 'P'
    else: bigger = 'R'
    if r == 'Brachyspina': rprint = 'Brachy'
    elif r == 'Mulefoot': rprint = 'Mule'
    else: rprint = r
    print '\t%s\t%s\t%s\t%s\t%s\t%s\t%s' % ( rprint, grouped_pryce_fits[r].params[1],
                                             grouped_rec_fits[r].params[1], bigger,
                                             tval, pval, significant )


Pryce versus Pryce+recessives
	Trait	b0_pryce		b0_rec			Faster	t-value		p-value			sig
	--------------------------------------------------------------------------------------------------------------
	Low, low	0.000172932096678	-0.000610828242115	R	8.2856671602	4.82480501423e-10	****

In [39]:
print 'Pryce versus Expected'
print '\tTrait\tb0_rec\t\t\tb0_exp\t\t\tFaster\tt-value\t\tp-value\t\t\tsig'
print '\t%s' % ( '-'*110 )
for i, r in enumerate(recessives):
    tval, pval = test_slopes(grouped_pryce_fits[r], expected_fits[r])
    if pval < 0.05/11.: significant = '****'
    else: significant = ''
    if grouped_rec_fits[r].params[1] > expected_fits[r].params[1]: bigger = 'E'
    else: bigger = 'O'
    if r == 'Brachyspina': rprint = 'Brachy'
    elif r == 'Mulefoot': rprint = 'Mule'
    else: rprint = r
    print '\t%s\t%s\t%s\t%s\t%s\t%s\t%s' % ( rprint, grouped_pryce_fits[r].params[1],
                                             expected_fits[r].params[1], bigger,
                                             tval, pval, significant )


Pryce versus Expected
	Trait	b0_rec			b0_exp			Faster	t-value		p-value			sig
	--------------------------------------------------------------------------------------------------------------
	Low, low	0.000172932096678	-8.30969720977e-05	O	3.56346949553	0.00100631375663	****

In [40]:
print 'Pryce+recessives versus Expected'
print '\tTrait\tb0_rec\t\t\tb0_exp\t\t\tFaster\tt-value\t\tp-value\t\t\tsig'
print '\t%s' % ( '-'*110 )
for i, r in enumerate(recessives):
    tval, pval = test_slopes(grouped_rec_fits[r], expected_fits[r])
    if pval < 0.05/11.: significant = '****'
    else: significant = ''
    if grouped_rec_fits[r].params[1] > expected_fits[r].params[1]: bigger = 'E'
    else: bigger = 'O'
    if r == 'Brachyspina': rprint = 'Brachy'
    elif r == 'Mulefoot': rprint = 'Mule'
    else: rprint = r
    print '\t%s\t%s\t%s\t%s\t%s\t%s\t%s' % ( rprint, grouped_rec_fits[r].params[1],
                                             expected_fits[r].params[1], bigger,
                                             tval, pval, significant )


Pryce+recessives versus Expected
	Trait	b0_rec			b0_exp			Faster	t-value		p-value			sig
	--------------------------------------------------------------------------------------------------------------
	Low, low	-0.000610828242115	-8.30969720977e-05	O	-8.57528007751	2.03819166505e-10	****

Reference figure for expected rate of allele frequency change.


In [41]:
fig = plt.figure(figsize=(16, 12), dpi=300, facecolor='white')

markers = itertools.cycle(['o', 'v', 's', 'd', '^', '*'])

# Compute the expected frequency for each generation.
expected = {}
for r in [0.01, 0.05, 0.10, 0.25, 0.75, 0.99]:
    expected[r] = []
    for g in xrange(0,21):
            if g == 0:
                expected[r].append(r)
            else:
                q0 = expected[r][g-1]
                p0 = 1. - q0
                q1 = (p0*q0) / (p0**2 + (2*p0*q0))
                expected[r].append(q1)
    
ax = fig.add_subplot(1, 1, 1)
#ax.set_title('Expected Change in Allele Frequencies')
ax.set_xlabel('Generation')
ax.set_ylabel('Allele Frequency')
for r in [0.01, 0.05, 0.10, 0.25, 0.75, 0.99]:
    l = 'Expected %s' % ( r )
    ax.plot(expected[r], label=l, c='k', lw=1.5, marker=markers.next())
ax.set_ylim(0.0, 1.0)
#legend = ax.legend(loc='upper right', shadow=False)
                
legend(loc='best')
plt.tight_layout(pad=1., w_pad=0.5, h_pad=0.5)
fig.savefig('/Users/jcole/Documents/AIPL/Genomics/Recessives/low-low-expected-allele-frequency-change.png', dpi=300)



In [41]: